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Abstract

This report concerns the prediction of the elastic moduli and the internal stresses within the
unit cell of a fabric reinforced composite. In the proposed analysis no restrictions or assumptions
are necessary concerning yarn or tow cross-sectional shapes or paths through the unit cell but the
unit cell itself must be a right hexagonal parallelepiped. All the unit cell dimensions are assumed
to be small with respect to the thickness of the composite structure that it models..

The finite element analysis of a unit cell is usually complicated by the mesh generation
problems and the non-standard, adjacent-cell, boundary conditions. This analysis avoids these
problems through the use of preprogrammed boundary conditions and replacement materials (or
elements). With replacement elements it is not necessary to match all the constituent material
interfaces with finite element boundaries. Simple brick-shaped elements can be used to model the
unit cell structure. The analysis predicts the elastic constants and the average stresses within each
constituent material of each brick element. The application and results of this analysis are
demonstrated through several example problems which include a number of composite
microstructures.
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I. Introduction

A unit cell of fabric reinforced composite is any small, closed, polygonal volume of
inhomogeneous material (often brick shaped) which, when reproduced and similarly aligned, can
be stacked , (side by side, top to bottom, and end to end) and joined together (as in solid brick
construction) to approximate a varicty of simple structural components whose minimum external
dimensions are much larger than any unit cell dimension. Furthermore, it is desired that the
thermo-mechanical response of the component and the unit cell assembly be similar. A variety of
different unit cells and analyses have successfully predicted fabric reinforced composite moduli
(Ref. 1) and average thermal properties (Ref. 2) but the resolution of the detailed internal stress
distribution within a unit cell has been more difficult.

The ability to resolve the stresses within the unit cell of a fabric reinforced composite has
at least three areas of applicability. Problems of crack growth within the microstructure are the
most challenging of the three. The capacity to resolve the stress details must be very high in this
application. Another level of usefulness is the prediction of the initiation and propagation of
yielding or plastic flow (usually in the matrix phase) within the microstructure. This still requires
a detailed knowledge of the internal stresses but it is not necessary to superimpose crack induced
stresses on top of an already complicated stress field. A third, and much less demanding, level of
usefulness is in material ranking and trade off studies. This level of engineering rates the
likelihood of different fabric microstructures to perform satisfactorily in specific applications.
Here the performance criteria can be quite simple and the demand for stress accuracy and detail
can be significantly less than in the two prior applications. The large number of material and
microstructural parameters available to the designer (or selector) of a fabric reinforced composite,
coupled with the expense of experimentally characterizing these materials, makes initial screening
by mechanical analysis more attractive. It was this application that was of most concern in the
development of this analysis method. Numerical accuracy was clearly sacrificed to reduce
modeling complexity in a manner consistent with material screening and comparison study
requirements.

The three-dimensional stresses within a unit cell of a fabric reinforced composite can be
predicted by the application of a general purpose finite element code. However, the associated
boundary conditions on the unit cell surface and the mesh generation problems can be difficult.
The program described in this report avoids these difficulties through the use of preprogrammed
boundary conditions and replacement elements. With replacement elements it is not necessary to
match all the internal material interfaces with finite element boundaries. Thus, simple, uniform,
parallelepiped elements can be applied to a unit cell structure whose boundaries are themselves a



parallelepiped. Most of the common reinforcing microgeometries can be modeled with this shape
of unit cell. The analysis predicts both the stresses (and strains) within each homogeneous
element, and the average stress (and strain) within each dissimilar material contained in each
replacement element. Conventional yield or failure criteria can then be applied to each material in
each element, as in conventional stress analysis.

The proposed analysis places no restrictions on fabric microgeometry within the unit cell
except that the fibers all be continuous, the fiber packing within any tow remain relatively
constant, and the microgeometry be deterministic.

The key to the usefulness of this analysis is the performance of the replacement elements.
This performance will be investigated for several sample problems of increasing complexity.
These sample problems also help to explain the analysis and its application. The discussion begins
with a simple one-dimensional tension bar problem. At this level the analysis seems almost trivial.
The extension to two and three-dimensional problems is not trivial. In some of the sample
problems the exact solution for the internal stresses is known. The plain weave unit cell is the most
complex of the sample problems. For comparison, another numerical solution to this problem is
available from an earlier study.

The two and three-dimensional problems require a computer analysis. The final version
of this numerical analysis, as it evolved from a sequence of programs directed at each sample
problem, is a Fortran program written for the Sun Spark station 1. All of the equations and
derivations for the two and three-dimensional analyses, along with the program listing and
input/output descriptions, appear in the Appendices.

This analysis method and the related Fortran program, REPLACE, are considered to be an
update of the earlier analysis program, FABNEW, which was developed about four years ago
(Ref. 1). However, the earlier program has a thermal expansion prediction capability that could
not be incorporated into REPLACE due to time and schedule limitations.



II. One Dimensional Analysis

In this section, the application and characteristics of replacement finite elements will be
introduced at the simplest level, namely one-dimensional clastic analysis. Through the example of
a tension bar, the convergence of various finite element models for the elastic deformations will be
investigated and compared to the known solution. The proposed replacement element analysis is
also capable of predicting average stresses in cach constituent material within each clement. The
accuracy of these stress predictions are considered. There is no direct computational advantage to
the use of replacement elements to model such a simple problem but it is instructive to initially
consider the use of these elements at this elementary level.

Sample Problem #1

Consider the tension bar of Figure 1 in which the left hand half is made from a
homogeneous isotropic material with modulus E and cross-sectional area A. The other half has
the same cross-sectional area but the material is five times stiffer. From elementry considerations
the total elongation of the bar (3) is given by the sum of the elongations of the two halves.

=2+ sie(s) -2 5

AE\2/ BSAE\2 5 AE

where P is the axial load and L the total length of the bar. The axial stress () and strain (€ ) in
each material are given by

P
O = Op = A
- S
where subscripts r.L designate right and left.

The same results could also have been obtained using finite element analysis as long as one
of the finite element nodes coincided with the material discontinuity. In that case all of the
clements would be homogeneous and their stiffness matrices precise, as long as the assumed
displacement mode shapes included a constant and a lincar term. The stiffness matrix [k] relevant
to the axial forces and displacements at the end points of the bar is given by

_SAE| 1 -
(k) = =T [-u ‘]



If the material discontinuity does not coincide with a node point then one element will be
inhomogeneous, as shown in Figure 1, and the finite element solution will be an approximate one,
as long as the assumed displacements are simple polynomials. The accuracy and convergence
depends on the choice of mode shapes. For example, consider a linearly varying displacement
within each element and an internal node placement at the 1/3 and 2/3 points along the bar length,
as shown in Figure 1. Each subsequent refinement of the finite element grid divides each prior
clement into three equal segments. The middle element of the model will always be
inhomogeneous as the element size decreases. The stiffness matrices for the homogencous elements

are given by

_AE -
(k=9 [—I 1]

where 1 is element length.

The stiffness matrix for the single inhomogeneous element could be obtained from the
general energy formula (Ref. 3)

L
tk]=[ffBTDde = AfBTDde ()
0

VoL
where B is the strain/displacement matrix and dx (dv) is an increment of length (volume) along the
bar. D is the local material stress/strain relation. Supercript T designates transpose of a matrix.
The resulting inhomogeneous bar stiffness matrix is given by

_3AE| ! -
(k) = =5 [_l |].

Figure 2 is a plot of the error in the bar elongation prediction as element size diminishes. The
predicted end displacement approaches the known solution monitonically as the influence of the
single inhomogeneous element error diminishes with element length. However, the error in the -
average strain of the center element persists at a high level (80%). This error can be reduced by
resorting to higher order elements; but there isno accepted method for obtaining either the average
or the detailed strains or stresses in the constituent materials within the inhomogeneous element.




Now consider a different approach to the same problem. Instead of applying the energy
formula for the stiffness matrix, replace the inhomogeneous material with a fictitious homogeneous
material that matches the axial response of the inhomogeneous materials. The center element is
obviously a case of "stiffness in series”, for which an equivalent modulus (E) can be obtained from
the rule of mixtures for stiffnesses in series (Ref. 4):

ELER
VLER"’ VREL

E =

where v j stands for fractional length of the i th segment of the element . For the particular
example at hand where E=E, =Ep/5and v, = Vg = 0.5

= _ S5E

E =33
If this equivalent modulus is used for the center element the exact solution results. What is better,
the "stiffness in series” model can be used to compute the average and local stresses and strains in
the various materials of the inhomogeneous element from the nodal displacement solution. In
particular, from Figure 1,

- _ P _ _ P

which is the correct result.

This process of substituting equivalent homogeneous elements in place of inhomogeneous
ones is termed the "replacement element” method.

Of course, if the "element in series” results were known, a priori, there would have been no
need to resort to a finite element solution. However, in more complicated two and three-
dimensional problems, knowing the local solutions for series and parallel stiffness models is not
equivalent to solving a global problem that involves their use in place of inhomogeneous elements.
For example, if the tension bar of Figure 1 were part of a redundant truss problem a truss analysis
would still be required.

The error inherent in the use of the general energy formula, in combination with a low
order displacement mode shape assumption, arises from the formula's inability to distinguish
between series and parallel stiffnesses. For one-dimensional problems, with linear displacement
assumptions, the energy formula presumes a "stiffnesses in parallel” situation, whether that is the
case or not. The introduction of higher order displacement modes permit the general energy
formula to make the necessary distinction. However, for polynomial mode shapes and
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discontinuous material propertics, the convergence rate improvements are slow and detailed stress
and strain determination problems remain.



III. Two Dimensional Analysis

This section applics the concept of substituting replacement homogeneous elements
in place of inhomogeneous ones at the generalized plane strain level of two-dimensional
analysis. As in the one-dimensional case, the approach is first illustrated through a specific
example for which the exact solution is easily obtained.

There are several different notions that should be introduced in the transition from
one to two dimensions. The first is the unit cell concept. Much of the earlier work (Ref. 5)
on the resolution of detailed stress fields in unidirectional materials (and laminates built up
from unidirectional plies) used this type of idealization to make a large random
microgeometry amenable to deterministic analysis. The unit cell approach looks for the
simplest essential volume of composite microstructure from an analysis viewpoint. In
two-dimensional analysis this selection is usually easy. Ref. 5 considered some convenient
unit cells for square and hexagonally packed unidirectional composites. Each of the three
sample problems in this section will begin by defining one or more unit cells for subsequent
analysis. There are an infinite number of possible unit cells for a typical composite
microstructure so the final choice is often somewhat personalized. The smallest unit cell is
not always the most convenient one if the boundaries are non-rectangular.

Another basic difference between one and two-dimensional problems is the
mathematical nature of the replacement element idealization. In one dimension the material
interfaces are discrete points. Continuity of normal stress and the geometric relationship
between average element normal strain and average constituent normal strains are the only
relevant concerns. In two-dimensional analysis the constituent material interfaces are
assumed to be linear (or planar) with several local stress and strain components of concern.

The physical nature of the replacement element process also changes from series
and parallel bar or rod models to parallel plate models. The use of the general energy
formula from Eq. 1 (as applied to a two-dimensional finite element) in combination with
low order displacement mode shapes lead to the tacit assumption that each constituent
material is arranged in a stacking of thin plates parallel to the plane of the analysis. The
dissimilar material plates have their thicknesses in proportion to their respective volume
fractions in the element. In reality, the constituent material interfaces are not parallel to the
analysis plane but normal to it. The replacement element process corrects this
inconsistency by rotating the same stacking of plates 90° about the material interface such
that the final set of interfacial planes, between the parallel plates, preserves the original
angle of the interface in the plane of the analysis. This procedure can only be applied to
two constituent materials at a time whose interface is a single straight line in the



planc of the analysis. Thus, while the energy formula preserves only the constituent material
volume fraction, the replacement element process preserves both the constituent volume fraction
and the direction of the interface. Only the order or sequence of constituent material positioning
across an interface is lost in the idealization. This process is best understood by considering the
specific examples that follow.

Sample Problem #2

Figure 3 shows a laminated composite consisting of parallel bonded sheets of two
different homogencous isotropic materials. On & gross scale this assemblage of plates may be
considered to be a composite material with a plane of isotropy parallel to the material interfaces.
The principal axes of the composite are any pair of axes in the plane of isotropy with a third axis
normal to that plane. In the principal axes, or natural coordinates of the composite, the elastic
constants can be established from the application of elementry mechanics principals to the unit cell
structure. Also, the same elementry model can be used to obtain the equations for the internal
stresses in each contitutent material corresponding to any remotely applied state of uniform
composite stress or strain. The elastic constants and the detailed stresses and strains can then be
transformed into any global reference system: in particular, the one shown in Figure 3 where one of
the natural coordinates correspond to the z-axis of the global reference system.

The isotropic properties of the two sets of parallel plates can be chosen to match the
properties of aluminum and epoxy from Table 1. The volume fractions of both constituents are
0.5. From elementry mechanics considerations the elastic constants of the composite, in the
principal axes, can be obtained as follows. Consider the unit cell of Fig. 3 in the 1,2,3 coordinate
system. From equilibrium and resolution of forces the average composite stresses (5‘; ,7” ) are
related to the constituent stresses (T .k ) 7;:‘ ) by

0, = 0'2:' = 05°
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03 =03 VAI+EUZ:EPVEp
— - I-
Te=T2=T7

where v; designates volume fraction of the i th constituent and Ep and AL designate epoxy and

aluminum respectively. The corresponding strains ( € - ‘7” , e‘; , ’yk ) are related by
[}

geometry and compatability as follows )
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These 12 equations plus the individual stress/strain laws for the two constituent materials form a
system of 20 equations that can be solved for the composite stress/strain relation and the individual
constituent stresses and strains corresponding to any applied composite stresses or strains (see
Appendix A). From the composite stress/strain relations the composite elastic constants are

E, =E; =525x 106 psi
E,=1.39x 106 psi

G =0.354x 106 psi
Vg =Vyy =0325

Vi3 = 0.255

From these principal values the enginecring constants in another coordinate system, obtained by a
rotation about the 3-axis of Figure 3, can be calculated from the appropriate 2-D transformation

equations (given in Appendix B). In particular, for a rotation of 459 about the 3-axis of Figure 3
the elastic constant are

Ex=Ey=111x106psi
E,=5.25x 106 psi
Gyy=0.968 x 106 psi
Vyy = 0.566

Vxz = Vyz = 0.067

Tyx = Thay,y = -0.296
Tixyz=0.034



For an average composite tensile stress of one psi in the x-direction (with all the other
average stress components equal to zero) the stresses in the constituent materials are given by

Aluminum Epoxy
Oy 1.103 0.897
Oy 0.103 -0.103
C, -0.251 0.251
Txy 0.103 -0.103

These stress and moduli predictions from elementry analysis are exact because they can be shown
to satisfy all the local and global conditions of equilibrium and compatibility.

As in the one-dimensional example, these results can also be obtained by conventional
finite element analysis using various types of elements and grids. The unit cell can be analyzed in
the principal coordinates of the material, as shown in Figure 4, using rectangular or constant
strain triangular elements without violating element material homogeniety. The applied unit stress
in the x-direction can be resolved into its components in the 1,2,3 coordinates of Figure 4 by either
a Mohr's circle or the use of the stress transformation equations of Appendix B. The resulting
composite moduli and constituent stress predictions can then be transformed back into the global
x,y,Z coordinate system. These results agree precisely with the results of the elementry analysis.

Alternatively, using the unit cell and grid of Figure 5A, with constant strain triangular
elements, the exact results can be obtained from homogeneous elements without the necessity of
transforming the input and output from one coordinate system to another.

It is interesting to also consider the application of inhomogeneous finite elements to the
analysis of the same unit cell. Figure 5B shows this unit cell of the composite and one possible
subdivision of the unit cell into rectangular elements. Some of the elements are homogeneous and
some inhomogeneous. Using 4-node, isoparametric, brick elements (Ref 3); generalized plane
strain analysis; the 25-node finite element grid shown in Figure 5B; and the general energy
formula (Eq. 1) for the stiffness matrix of the inhomogeneous elements, the analysis
overestimates the x and y moduli by almost 100%. Refinement of the grid leads to the moduli
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estimates of Figure 6. The convergence is slow. Furthermore, there is no effective method of
obtaining constituent material stresses within the inhomogeneous clements.

Now consider replacing the inhomogenceous elements in this example problem with
replacement elements. To make this substitution in two dimensions first consider a subelement of
the inhomogeneous material, shown in Figure 7. The sides of this subelement are cither parallel or
normal to the material boundary plane. The volume fractions of the two materials are the same in
the subelement as in the element that contains it. Assume that the replacement homogeneous
material for the subelement and the whole element are the same. The derivation of Appendix A
then can be applicd to establish both the replacement homogeneous material moduli and the
average constituent material stresses, once the average element strains are established. The physical
nature of the homogeneous-inhomeogeneous replacement process is now evident. The
inhomogencous element of Figure 7 is replaced by a homogeneous composite element consisting of
parallel plates bonded together in the same volume fraction as the inhomogeneous element and
having the same orientation of the material interfaces. With the 25-node finite element grid the
substitution is of the nature shown in Figure 8. For simplicity let the rectangular element
stiffness matrix be made up of the sum of two constant strain triangular elements. (There is no
need for higher order elements in this example.) The same replacement material substitution is
done for both of the constant strain triangles that make up the rectangular element. The stress
predictions for the constituent materials in the rectangular element are the average values from the
two triangles.

The results from the 25-node finite element analysis are not the same as the exact solution
for either the moduli or the constituent stresses. The Young's modulus in the loading direction is
31% high as a result of the use of the replacement elements. This is a considerable improvement
over the 100% error using the same finite element grid with the general energy formula for element
stiffness. This error diminishes to less than 14% if the rectangular grid is changed from 4x4 to 8x8
as shown in Figure 9. Since the replacement element analysis also provides constituent stresses it
is of interest to compare the stresses in the 4x4 replacement elements to the known results. The
following table makes this comparison.

i Phase _ Epoxy Phase
Replacement Replacement
Element Exact Result Element Exact Result
Ox(psi) 0.906 1.103 0.677 0.898
O y(psi) 0.168 0.103 -0.081 -0.103
O z(psi) -0.264 -0.251 0.189 0.251
T xy(psi) 0.155 0.103 -075 -0.103
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The peak stresses from the replacement elements are about 20% lower than the exact values.
Unfortunately, as in the one-dimensional case, these constituent stress errors do not diminish with
grid refinement. These errors must be reduced by the use of improved elements. The stresses in the
homogeneous elements away from the replacement elements do converge rapidly to the exact
results with increasing grid refinement.

As was true in the tension bar example, the use of the general energy expression for the
inhomogeneous element stiffness matrix, in combination with low order displacement mode
shapes, favors an "elements in parallel” model of behavior rather than an "elements in series”
model as is sometimes more appropriate. Figure 10 illustrates this tendency of an inhomogeneous
plane stress element (by reference to a lattice or framework model). If the upper and lower halves
of the element, as shown in Figure 10A , were made of dissimilar isotropic materials then good
engineering judgment would dictate the lattice representation of Figure 10B, where lattice members
that cross the material boundary are modeled as "elements in series” while those that do not cross
the material boundary are simply homogeneous. The low order energy formula leads to a lattice
structure of the type shown in Figure 10C. If there is not much difference between the stiffness of
the constituent materials the two lattice models do not differ significantly. But if the constituents
are very different, elastically, then the two models differ widely.

Sample Problem #3

This sample problem involves the determination of the extensional moduli and fiber/matrix
stress concentrations for-a unidirectional composite consisting of a square packed array of glass
fibers in an epoxy matrix. These stiffnesses and stress concentrations are well established from
several earlicr micromechanics investigations. It will be shown that finite element analysis based
on the substitution of orthotropic replacement elements for the inhomogeneous elements can yield
approximately the same results for both moduli predictions and stress analysis even though the
stresscs within any constituent material in the unit cell model are not uniform.

The specific problem concerns a 50% fiber volume fraction of unidirectional E glass in an
epoxy matrix. Figure 11 shows the square packed array of fiber cross-sections and a single unit
cell of the composite. At most, only one quadrant of the unit cell needs to be analyzed due to
structural and load symmetry. The constituent material properties are given in Table 1.

The 5 x 5 rectangular finite element grid of Figure 12 is superposed on the fiber/matrix
geometry. The rectangular, generalized plane-strain, element stiffness matrices are formed from a
pair of constant strain triangular elements, using the same replacement material properties in each
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triangle of the rectangle. This leads to the material model of Figure 13 in which the plate thickness
and spacing within each originally inhomogencous element reflects the true constituent volume
fractions and the approximate interfacial geometry (with the cylindrical interfacial surfaces
replaced by flat planes).

Figure 14 contains contour plots of the stresses in the epoxy matrix due to a remote unit
average tensile stress normal to the fiber principal axis. The stress distributions in the glass fibers
are somewhat featureless. The stresses in the inhomogeneous elements were treated the same as the
homogeneous element stresses in preparing the contour plots. For comparison, the same
distribution of matrix stresses is also given in Figure 15 from Reference 5. The latter stresses
were established using a conventional finite element analysis in which all the elements were
homogeneous and isotropic. The stress distributions are essentially the same except for a slightly
higher replacement element stress concentration at the fiber/matrix interface along a line of closest
approach of adjacent fibers in the loading direction. This shows that the replacement scheme can
give accurate stresses when the stresses and strains within the constituent materials are nonuniform.
Furthermore, it is not necessary to resort to more refined grids in order to obtain comparable stress
predictions.

The transverse Young's modulus prediction from the replacement element solution was 1.8
million psi. This also compares favorably with other published values for the same square-packed
array of glass fibers. For example, Reference 4, lists a value of 1.7 million psi for a 50% fiber
volume fraction glass/epoxy with similar constituent properties using conventional finite element
analyses.

Sample Problem #4

This sample problem also represents a 2-D generalized plane-strain analysis in which the
‘constituent material stresses are not uniform. However, the geometry of the reinforcement phase
was chosen to resemble that of a wavy tow. This microgeometry has sometimes been chosen as
representative of woven fiber unit cell microgeometries (References 4, 6 ). Figure 16 shows the
idealized composite structure and a unit cell of that structure. The reinforcing phase consists of
stacked layers of corrugated aluminum sheets separated by similar layers of epoxy. Perfect
bonding is assumed between the two phases. The dimensions of the microstructure are given in
Figure 17. The Young's modulus of the composite normal to the plane of Figure 16 can be
predicted adequately by the rule of mixtures for elements in parallel, but the Young's moduli in the
x or y- directions require a finite element analysis. This analysis will also consider the
deformations and stresses in the unit cell as a result of some average strain in the x-direction, with
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all other average strain components held to zero. The constituent material properties are given in
Table 1. The volume fraction of the aluminum is 56%. From symmetry of the mlcroslmctune and
loading only half of the unit cell needs to be analyzed.

In order to have a basis of comparison for the approximate analyses a detailed finite
clement analysis was performed on this microstructure using the NASTRAN code (Ref. 7) and the
two grids shown in Figure 18. The coarse grid contans 20 elements. The refined grid has 676
elements. All the elements were homogeneous isotropic CHEXA2 or CWEDGE elements. Three
independent unit strain cases were run in order to obtain average composite extensional properties
and the corresponding stresses and deformations. The average strain case {é x=10, € y= € z
= 7yz = ')’xz = ')'xy = 0.0} gave the required internal deformations and stresses. The strain
cases {€ z=10,€Ex= € y="Yyz="Yxz="TYxy=00}and { Ex= € y= € z=10

'}’ yz= ')’ Xz = '}’ xy = 0.0} gave sufficient information to establish the extensional
moduh. The last strain case was obtained by specifying that all average strains vanish and that
both constituent materials have a unit coefficient of thermal expansion while the unit cell is subject
to a one degree change in temperature. This was necessary to avoid the occurrence of constant
displacement terms in the multi-point constraint equations at nodes that were located on surfaces of
the unit cell where symmetry conditions did not apply (Ref. 7).
The generalized plane strain, extensional, elastic constants from the NASTRAN models are

Coarse Grid Fine Grid
Ex psi (x106) 3.55 3.09
Ey psi (x106) 1.48 1.43
Ez psi (x106) 581 5.83
Vax 0.25 0.26
Vay 0.32 0.32
Vyx 0.20 0.24

The results from the fine grid are used as the basis of comparison for this example problem.
Figures 19 and 20 contain plots of the unit cell surface normal deformations and internal stress
components for the €x# 0 strain case. Many of the stress details of the fine grid are not evident
in the coarse 20-clement solution. Even with the refined grid it is not certain whether some of the
peak stresses have been accurately quantified. The large amount of periodic local bending and
shearing deformations in the reinforcing sheets are evident in the deformation plots. Large local
bending stress gradients through the aluminum sheets are also evident in the stress plots. In brief,
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the task of characterizing the response of this microstructure is a more complex problem than the
previous example problem and represents a stiff test of the replacement element method.

First consider the inhomogeneous element modeling of this microstructure using the 4 x 4
grid of Figure 21 and the general energy formulation for the inhomogeneous element stiffness
matrices. Using four-node, isoparametric, generalized plane strain elements, with the 16-clement
grid the extensional moduli estimates are

E, = 4.90 x 106 psi
Ey = 3.12 x 106 psi
E; = 584 x 106 psi

Except for Ez these estimates deviate significantly from the NASTRAN results. If the grid is
refined from 4 x 4 to 8 x 8 as shown in Figure 21 the moduli values improve somewhat to

Ex = 3.95 x 106 psi
Ey = 2.32 x 106 psi
Ez = 5.88 x 106 psi
However, both the Ey and Ey moduli estimates remain beyond the desired bounds of engineering

accuracy, and no internal stress data accompany these stiffness estimates. Both of these
shortcomings can be remedied by the use of replacement elements.

From the NASTRAN stress results it is obvious that the 4 x 4 grid will not give sufficient
detail to present any kind of comprehensive picture of the true stress distributions, no matter how
accurate the replacement element results may be. Thus the 10 x 10 grid of Figure 21 is applied to
the current problem with the same type of rectangular replacement element that was used in the
previous sample problem. With this grid 18% of the elements are inhomogeneous. The resulting
moduli estimates are

Ex = 3.21 x 106 psi
Ey = 1.62 x 106 psi
E, = 5.89 x 106 psi

These values compare favorably to the base line NASTRAN results. Figure 22 presents the stress
contours and unit cell surface normal deflections from the 10 x 10 replacement element analysis of
the Ex # 0 strain case. The approximations are remarkably consistent with, though slightly less
detailed than , the fine grid NASTRAN results in Figure 20. The approximations are a major
improvement in detail over the coarse NASTRAN stress results.
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IV. Three Dimensional Analysis

The previous sections and example problems have hopefully established the credibility of
the replacement element method at the one and two-dimensional analysis levels. This section
extends the method to the 3-D level. Figure 23 shows a parallelepiped element containing two
diffcrent constituent materials. The geometric configuration can be described by specifying the
volume fraction of one (or both) constituent and the direction of a normal to the interfacial plane.
The sequence in which the constituent materials appear, as an observer moves along the normal to
the interfacial plane, is irrelevant to the replacement element method. Figure 23 illustrates the
two spherical angles \J/, /5 that specify the direction of the normal to the interfacial plane. These
two direction angles also serve to locate a set of local coordinates (X,y,Z) parallel and normal to the
interfacial plane. The ¥ and Z axes lie in the plane. X is normal to it. The replacement element
concept rearranges the two bulk constituents into a series of parallel plates with the plate surfaces
paralleling the original interfacial plane. Normal and tangential shear stress continuity is preserved
across the interface. Compatability of normal strain in the y and z-directions and shear strain in
the yZ plane (of Figure 23) is maintained across the interfaces.

Constituent material properties are treated more generally than in the 2-D case. Each
constituent is assumed to be orthotropic with a plane of isotropy normal to the principal
reinforcing direction. The principal reinforcing direction must be specified, by means of two
spherical angles, | and @5. These angles are referenced and measured in the same sense as the
/1 and Y 2 angles of Figure 23 with the interfacial normal direction replaced by the grain (or
fiber) direction of the constituent material. Usually the principal reinforcing direction will parallel
the interfacial plane but this is not assumed in the analysis.

To form the stress/strain law for the replacement element a number of stress and strain
transformations must be carried out. Each constituent material has its stress/strain relations
initially specified in the natural coordinates of the material. These properties must be transformed
into the x,y,z global coordinates first and then transformed into the X,y,Z interfacial coordinates.
The replacement analysis then yields the replacement material stress/strain law in the X,3,Z
coordinates. Finally, these properties are transformed back into the global x,y,z coordinates for use
in constructing the element stiffness matrix. This sequence of transformations is retraced (after the
finite element analysis of the unit cell yields node point deflections and average element strains in
the global coordinates) in order to get constituent material stresses in the natural coordinates of the
materials. Appendix C derives the replacement element stress/strain equations in the interfacial
coordinates. Appendix D gives the transformation equations.
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The 3-D stress and strain transformations are accomplished by a pair of essentially 2-D
transformations. Each transformation accounts for each spherical angle of rotation that specifies
either the direction of the normal to the interfacial plane or the fiber direction.

Sample Problem #5

As in the 1-D and 2-D case, the first 3-D sample problem is an elementry one for which a
solution is available. However, in this case the known solution is not exact. The problem concerns
the "3-D weave" or "XYZ" composite construction (see Figure 24) in which there are three
orthogonal fiber directions (Ref 8) . The fibers remain essentially straight. The volume fraction of
fibers in each of the orthogonal directions usually vary to match the design requirements. The
types of fibers may also vary with direction. Figure 24 shows one unit cell of the composite
microstructure. Symmetry considerations reduce the essential part of the unit cell that must be
analyzed to one eighth of the total unit cell volume. This reduced volume is shown in Figure 25. It
has a 25% volume fraction of interstitial bulk matrix, a 25% volume fraction of unidirectional
composite with fibers in the x-direction, a 37.5% volume fraction of composite in the y-direction
and a 12.5% volume fraction of composite in the z-direction. The unidirectional material is taken
to be graphite/epoxy with the properties listed in Table 2 under material A. The bulk epoxy
properties are the same as in the prior sample problems. Using conventional, homogeneous, eight-
node, isoparametric brick elements and the finite element grid of Figure 26A, the extensional
composite elastic constants are

Ex = 5.49 x 106 psi
Ey = 755x 106 psi

E, = 343 x 106psi
\Y =

yz = 0.128

Viez = 0131

Vyy = 0.055

The average normal stress in the x-direction in each element as a result of an applied average tensile
stress of 1000 psi in the global x-direction is given in Figure 27. The results are approximate
because the stresses are not constant within each brick element.

The same problem can also be addressed using the replacement element approach. For
cxample, if the finite element grid of Figure 26B were applied to the XYZ microgeometry there
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would be three of the eight, equal -sized, brick elements that were inhomogeneous. Using the
replacement element analysis of Appendix D the pairs of inhomogeneous material in each of these
three elements can be resolved into three different replacement materials. Using one of these
replacement materials in each of the inhomogeneous brick elements the finite element analysis can
proceed as a homogeneous element analysis and the composite stiffnesses and average element
strains obtained. The same replacement material model may then be used to obtain average
constituent stresses and strains within each element. These stress predictions are given in Figure
28. A comparison of Figures 27 and 28 shows that the approximate results from the replacement
clement analysis are of considerable engineering value. The moduli predictions from the two

models compare as follows:

Homogencous Elcments Replacement Elements
Ex 5.49 x 100 psi 5.46 x 100 psi
Ey 7.55 x 106 psi 7.55 x 106 psi
E, 3.43 x 106 psi 3.44 x 106 psi
Viyz 0.128 0.128
Vxy 0.055 0.054

There are no stiffness discrepancies of any note between the models. The details of the input data
are given in Appendix E where this sample problem is used to demonstrate the input data
sequences for the interactive use of the replacement element computer code.

Sample Problem #6

The next 3-D sample problem represents a composite comprised of solid glass spheres in an
epoxy matrix. The volume fraction of the glass reinforcing phase is 25%. The spheres are all the
same size and are assumed to be packed in a cubic array as shown in Figure 29. The ratio of
sphere diameter to the spacing distance between centers of adjacent spheres (in the direction of
closest approach) is 0.684. The problem is the prediction of both the principal Young' modulus in
the x-direction of Figure 29 and the peak normal matrix stress along the line of closest approach
of adjacent spheres when the composite has an average remotely applied tensile loading of one psi
in the x-direction, with all other average stress components equal to zero.

The problem has no known exact solution but a numerical solution could be obtained with
any general purpose, 3-D, finite elements code based on the use of conventional, homogeneous,
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isotropic clements. However, it is of current interest to obtain a solution using rectangular grids
and replacement elements.

From symmetry considerations only one octant of a unit cell of the composite needs to be
analyzed. Figure 30 divides this octant into cubic elements with the 4x4x4 subdivision shown.
Each element is designated by an i j,k combination of integers. The i integer indicates the element
number along x-axis starting at the origin of Figure 30. j and k are the corresponding element
counts along the y and z-axes respectively. The 1,1,1 element has one corner on the origin and the
4,44 element is the farthest one from the origin. Table 3 contains the spherical angles (Y 1, 2)
that designate the direction of the outward pointing normals from the surface of the glass sphere in
each element. The table also contains the element volume fractions that are glass and epoxy. This
is all the input data that is necessary to compute the principal moduli of the composite and the
stresses in each material of each element using replacement elements. In this example there are 16
inhomogeneous elements out of a total of 64. Each element is modeled as an 8-node,
isoparametric, cubic element. The constituent propertes are given in Table 1. The predicted
Young's modulus in any of the global coordinate directions of Figure 30 is 0.86x106 psi. The
corresponding Poisson's ratio is 0.29 and the shear modlus is 0.26 x 106 psi. The peak normal
stress concentration in the matrix is 2.5. It occurs at the glass/epoxy interface.  The stress
concentration at the same point in a continuous fiber reinforced composite with the same ratio of
fiber diameter to adjacent fiber spacing is 1.80. The stresses within the constituent materials of the
replacement clements appeared to be consistent with the stresses in the neighboring isotropic
elements. The distribution of normal stress along two faces of the unit cell is shown in Figure 31.

Sample Problem #7

The last example of the use of the replacement element analysis considers the plain weave
unit cell and microgeometry of Figure 32 subjected to uniaxial tension in a reinforcing direction.
In this model the resin-impregnated and cured tows are considered to be non-circular tubes of
homogeneous orthotropic material that are woven together. These undulating tubes are bonded
together at all areas of contact and bonded to the bulk matrix pockets which fill all the interstitial
gaps between the tubes. The dimensions of the resin filled tows, the tow spacings and the other
geometric details were chosen to best match the microgeometries observed in photomicrographs of
woven graphite/epoxy composites (Ref. 1). The analysis was done for the purposes of (a)
predicting the cxtensional stiffness properties of a thick laminate made from symmetrically stacked
layers of plain-weave reinforced composite and (b) predicting the detailed stresses and strains
within one unit cell of this laminate when it is subject to a simple uniaxial tensile stress in one of
the principal tow reinforcing directions.
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By the use of structural and load symmetry the essential portion of the unit cell that needs
to be analyzed can be reduced in volume and complexity. Figure 32 shows one unit cell of the
plain weave microstructure with four planes of symmetry of both load and structure. Only the
fraction of unit cell volume between the four planes of symmetry needs to be considered. This
enclosed volume is shown in Figure 33 with a set of coordinates that parallel the edges of this
regular hexahedron of essential structure. The origin of the coordinates is at the centroid of the
hexahedron. These three coordinate axes are also axes of 1809 rotational symmetry of both load
and structure. Hence, only one quarter of this volume is essential to the analysis. Figure 34 shows
this reduced volume which represents only one sixteenth of the original unit cell volume. Further
symmetry exists for the structure but not the loading. Figure 34 also shows a simple retangular
finite element mesh superposed on the essential structure The use of replacement elements permits
the application of this grid without much regard for the internal boundaries between the two tow
materials and the bulk matrix. The mesh has been graded to give added stress detail near the
crossover point of the upper and lower tows (at the origin of Figure 34). The number of finite
clements in the smallest essential volume is 64 with 125 node points and 375 degrees of freedom
prior to the enforcement of the boundary conditions. Examination of the microstrcture within each
finite element shows that six, or 9.4% of these elements, contain all three constituent materials.
(The two tows are considered to be made from two different materials for bookkeeping
convenience.) Fourteen, or 21.9% of the elements, contain only one constituent material. The
remaining 44, or 68.7%, contain two constituent materials. This high percentage of replacement
elements (78.1%) makes this sample problem different from the previous ones which only required
a small number of replacement elements. Another essential difference is the presence of elements
containing three constituents. These special elements are treated as follows.

First, note that the two tow materials are in dircct contact with each other in each element,
rather than being separated by a layer of bulk matrix. Thus, the reinforced portion of each element
that contains tow material can be treated as a subelement that contains only two constituent
materials. Application of the replacement element logic can then be used to combine these two tow
materials into a single anisotropic replacement material. One new factor in this reasoning is that
the subelement containing the two constituents is, in general, no longer a right hexahedron. This
does not appear to invalidate the replacement process. After both tow materials have been lumped
together into a new replacement material then the process can be repeated, combining the new tow
replacement material with the bulk matrix material. The only new factor in the latter application
of the method is that the combined tow material may be generally anisotropic. This possibility is
covered in Appendix C. With these generalizations in place there does not appear to be any reason
to prevent the repeated application of the replacement material logic as many times as necessary in
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any given clement as long as a "trec diagram” of constituent material combinations, as shown in
Figurc 35A, can be described. Each outer branch @, @, ® of the tree diagram represents a
constituent material. Each junction of two materials @ , represents an application of the
replacement material logic. The lower trunk of the tree diagram @ represents the final
replacement material that is used to form the stiffness matrix for the element. The present analysis
code (Appendix F) is only general enough to handle the tree diagram of Figure 35A. No more
complexity was required for this sample problem.

As examples,consider the microgeometry of a few of the elements from the current sample
problem. The element designated in Figure 34 contains only one constituent material, the bulk
matrix. The tree diagram for this element is a single trunk of one material with no branches or
junctions. No replacement element analysis is required.

The element designated in Figure 34 contains two constituent materials, the bulk
matrix and one tow material. Figure 35B isolates this clement and shows its tree diagram. The two
constitucnt material branches combine at the single junction to form the trunk material. A single
application of the replacement logic suffices for this element. Figure 35C isolates element
from Figure 34. This element contains all three constituent materials: the bulk resin and both tow
materials. Its tree structure is identical to Figure 35A. The replacement logic is applied to the two
tow materials (1) and () at junction (B initially to form the new material (. Material @
and bulk matrix material (3) are then combined at junction ® to form the trunk material ®
via the second application of the replacement logic.

Some comments on the complex mixed boundary conditions on the six surfaces of the plain
weave structural model are appropriate. Node points on surfaces normal to the z-axis of Figure 36
have the customary symmetry conditions of zero normal displacements® and zero shear forces.
The same conditions also apply on the two sides that are at once normal to the x-axis or y-axis but
not containing cither axis. However, on the two sidcs containing the coordinate origin the
rotational symmetry conditions prevail. Node points along either the x or y-axes cannot displace
normal to the axisand must have a zero applied force component along the axis. A node point
along either of these two sides (but not on the x or y-axes) must have a corresponding node point
that is its mirror image on the obposite side of the coordinate axis that is contained within the side
in which the original node point is located (see Figure 36). The tangential displacements at these
two image nodes must be the mirror image of each other (across the intervening coordinate axis).
The normal displacement must be equal but opposite. The nodal force components normal to the
side must be mirror images of each other. The nodal force components parallel to the side must be

* except for rigid body and constant strain displacements
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equal but oppositely directed from their mirror image across the coordinate axis. Along the edges
of essential structure a combination of the conditions from the intersecting surfaces apply with the
displacement conditions prevailing over any contradicting force conditions in any specific
coordinate direction. Along the z-axis of Figure 36 the displacements normal to the z-axis vanish,
along with the force component parallel to the z-axis. At the coordinate origin all displacements
vanish. Comner displacements are determined by the particular strain case being studied, except
for displacements conditions at corners A,B,C,D of Figure 36. There the aforementioned mixed
rotational symmetry conditions apply to forces and displacements normal to the faces containing
the x or y-axis.

Table 4 contains all the geometric information required for each element. These values
were all obtained by viewing composite photomicrographs and making many sketches of planar
cuts through the essential structure. It is a chore that would lend itself well to preprocessing.
However, it is a matter of only a few days work as opposed to the weeks of work associated with
sctting up and checking out a finite element mesh based upon homogeneous elements.

The tow composite properties used are typical of unidirectional, intermediate modulus,
graphite/epoxy prepreg. Most prepregs cure out to about 65% fiber volume fraction. The fiber
volume fraction within a tow of a fabric reinforced composite is generally in the 70% to 75%
range. This could justify using higher tow composite moduli in the analysis. However, the loss in
properties due to the weaving process have never been established. The use of the lower properties
(associated with 65% fiber volume fraction) is an attempt to compensate for fiber breakage,
misalignment, and other weaving and processing damage. The overall fiber volume fraction for the
analysis model was 64% with 15% interstitial bulk matrix volume fraction and 85% tow volume
fraction. The constituent material properties correspond to the epoxy properties of Table 1 and the
graphite/epoxy A properties of Table 2. The predicted extensional elastic constants are, with
reference to the coordinates of Figure 33,

Ex = Ey =788 x100psi

E, = 169 x106psi

Vxz = Vyz = 0321

Vxy = Vyx = 0.048

As a reference point, the moduli from test data reported in Ref. 1 are

E, = 9.13x100psi (warp)

= 8.83 x 106 psi (fill)
Vxy = 0.1
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With conventional laminate theory, for a cross-ply laminate with a 15% thick layer of bulk resin,
the result would be

Ex = Ey = 9.68x106psi

Vxy = 0.050

The stress results are more interesting than the moduli predictions. For a unit remotely
applicd stress in the warp direction, with all other average stresses held at zero, the peak warp tow
stress has a value of about 4, giving a stress concentration factor of the same amount. This stress
occurs inside rather than on the surface of the unit cell and away from the cross over point of the
adjacent tows. It occurs as a result of high bending plus axial strain in the tow that roughly
parallels the load direction. Figure 37 contains contour plots of the stress in the fiber direction on
the primary load carrying tow surface. The axial stress in the fill tows are insignificant. Figure
37 also contains a plot of the axial fiber strain concentration factors based on the ratio of fiber
longitudinal strain divided by average composite strain in the load direction. These values differ
significantly from results reported in Ref. 9. The peak fiber strain concentration from the current
analysis is about 1.5 compared to 2.6 reported in Ref. 9. Also, the location of the peak strains do
not coincide. The peak strain occurs on the curved portion of the tow surface away from the edges
of the tow and away from the inflection point of the principal axis of the tow. In Ref. 9 it occurs at
the edges of the tow at the adjacent tow cross-over point. Plots of the other stress and strain
components also differ significantly. The two sets of analyses should not be duplicates of each
other because there were various differences in the models, the constituent properties, the degree of
mesh refinement, the order of the elements, etc. However, the differences in the results seem larger
than expected. Differences in tow cross-sectional variation along the tow axis may account for
much of the discrepancy. In the current analysis very little tow thickness variation was permitted
because very little was seen in composite photomicrographs. However, in Ref. 9 significant
nccking of the tow thickness (at the sides of the tow) was built into the analysis model near the tow
crossover point. Some of the strain concentrations could have been the result of these differences
in cross-sectional modeling.

In summary, the stress predictions for the sample problem appear to adequately reflect all
the major combined bending, stretching and shearing effects that were anticipated in the plane
weave tension analysis. The causes for some of the local strain differences between this analysis
and that of Ref. 9 remain to be resolved.

The rotational symmetry boundary conditions that were used with this sample problem are
not used frequently and were not included in the computer program listed in Appendix F. They
were used in this problem simply to avoid the necessity of inverting stiffness matrices larger than
300 square. The program in Appendix F has the more common conditions of geometric unit cell
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surfacc symmetry plus load symmetry (and asymmetry) built into it. The same results could have
been obtained using the program in Appendix F with some of the larger array dimensions increased
four fold, and one quarter of the unit cell volume analyzed rather than one sixteenth of the volume.
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V. Conclusions

The three-dimensional elastic analysis of complex composite microstructures is made
difficult by the constraint imposed by conventional finite element analysis on the correspondence
of internal material interfaces and element boundaries. The concept of a replacement element is
introduced for the purpose of relaxing this constraint. The replacement element combines the
constituent materials within an inhomogeneous element into a single anisotropic material to which
the established finite element procedures may be applied. This constituent material combination
depends on simple composite mechanics models for parallel bonded plates. This procedure
involves a physical rearrangement of the materials within the element and therefore represents an
idealization or approximation of the truc material interactions. It has been shown that the use of
these replacement elements can incur errors on the order of 20% in the predicted stresses within the
constituents. However, in the more complex problems in which the replacement elements occur
less frequently the errors in stiffness and internal stress predictions appear to be within a range that
is acceptable for some engineering applications; namely, trade-off studies that lead to the ranking
or selection of specific reinforcement microgeometries to meet specific structural requirements.

Through the use of several example problems of increasing complexity both the application
and results of the replacement element method are observed. The application is simpler and easier
than the conventional finite element method in complicated 3-D problems such as those posed by
many fabric reinforced composite microgeometries. The results are less accurate and less reliable,
but still acceptable, in view of the statistical variation in unit cell microgeometries and their
boundary conditions. A large number of finite elements are still required to model a complex
microstructure but beyond that point the mechanical analysis is much easier to automate and
eventually merge with computerized unit cell microgeometry generators, preprocessors and
postprocessors. The use of replacement elements still requires some skill in the selection of
rectangular grids which minimize both the number and complexity of the replacement elements.

It remains to establish guidelines for the use of replacement elements so as to minimize the
approximation errors, and also to improve upon the process itself to make it more sensitive to the
details of the constituent material distribution within an element. The latter tasks could not be
undertaken within the seven man-month scope of this effort.
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Table 1: Isotropic Constituents

Ex 106psi Vv Gx 106psi
Aluminum 10.0 0.30 4.0
E Glass 10.0 0.25 4.0
Epoxy 0.5 0.35 0.18
Table 2: Orthotropic Constituents
Ejx106psi | EpE3x100psi | wvypvy3 Vo3
GR/EP A 18.0 1.5 0.23 0.35
GR/EP B 21.0 1.7 0.23 0.30
G12,G13, x 106 psi Gy3 x100 psi
GR/EP A 0.7 0.7
GR/EP B 0.7 0.7
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Table 3: Microgeometry Data for Sample Problem #6
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metry Data for Sample Problem #6
(continued)

Table 3: Microgeo
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Figure 1. Tension bar sample problem #1.
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Figure 2. Inhomogeneous element etror in tension bar elongation.
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Laminated composite Unit cells

Figure 3. Sample problem #2 microgeometry.

3
Rectangular Triangular
F.E. analysls F.E. analysis

Figure 4. F.E. grids for sample problem #2 in principal coordinates.
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Figure 5. F.E. grids for sample problem #2 in global coordinates.
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Figure 6. Convergence of rectangular inhomogeneous F.E. solution.
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Subelement ldealization

Inhomogeneous element

Figure 7. 2-D Idealization of inhomogeneous element.

Figure 8. Unit cell idealization for sample problem #2.
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Figure 9. Finer F.E. grid for unit cell analysis.
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Unit cell Preferred lattice model Energy formula model

Figure 10. Lattice model of unit cell.
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Figure 11. Unidirectional glass/epoxy composite.

Figure 12. F.E. grid for unidirectional composite.
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Figure 13. Unit cell Idealization for sample problem #3.
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Figure 14. Contour plots of matrix stresses due to unit average stress in the x-direction.
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Figure 15. Matrix stress contours from conventional F.E. analysis.

Composite Unit cell

Figure 16. Microgeometry for sample problem #4.
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Figure 17. Microstructural dimensions for sample problem #4.
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Figure 18. F.E. grids for NASTRAN analysis of sample problem #4.
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Figure 19. Surface deflections of unit cell from NASTRAN.

(ex = 1.0 x 10°)

Figure 20. Baseline internal stress contours from NASTRAN.
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Figure 21. F.E. grids applied to sample problem #4.
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Figure 22. Stress/deflection results from replacement elements.
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Material
Figure 24. 3-D weave (xyz construction).

Figure 23. Global and interfacial coordinate systems.



Unit cell Essential structure

Figure 25. 3-D weave microstructure.
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Figure 26. Finite element grids for sample problem #7.
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Figure 27. Stresses from homogeneous element analysis.
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Figure 28. Stresses from Inhomogeneous element analysis.
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Inclusion array Unit cell

Figure 29. Microgeometry for sample problem #6.

Figure 30. Glass sphere Inclusion microgeometry and grid.
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Figure 32. Plain weave unit cell and microgeometry.
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Figure 33. Plain weave reduced volume.

Figure 34. Minimum volume for plain weave analysis.
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Figure 35. Tree diagrams for replacement elements.
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Figure 36. Mirror Image node point boundary conditions.
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Figure 38. 2-D transformation geometry.
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Figure 39. 3-D transformation geometry.

N/BY =2
A
—
NBZ =2 ’." \\//
'\.‘,"
o" \T /
VLT

Figure 40. F.E. grid description.
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Appendix A

(The 2-D Replacement Element Stress/Strain Relation)

This Appendix considers the replacement of a contiguous volume, filled with two different
homogeneous isotropic materials, by & single homogeneous orthotropic material. The original
isotropic materials are assumed to be separated by a single flat interfacial plane. It is also assumed
that the stresses within each of the original isotropic constituent materials are constant. The pair of
dissimilar bulk materials are, in effect, replaced by a series of alternating parallel plates with each
layer having the same elastic properties as one of the isotropic materials. The interfaces between
each dissimilar plate are parallel to the original bulk constituent interfacial plane. The thicknesses
of the alternating layers of each material are in the same proportion as the original volume fractions
of bulk constituent materials. As the plate thicknesses diminish the layered structure may be
considered to be a composite material in the macroscopic sense. This composite will have a
principal axis normal to the interfacial plane and the interfacial plane will be a plane of isotropy of
the composite. The following analysis relates to the generalized plane strain response of this
composite when the reference plane of the analysis contains the normal to the interfacial plane.

Consider the dissimilar materials i and j, both of which are homogeneous and isotropic with
elastic moduli Ej, v;, Gj and E;v;, Gj respectively. The materials are in the form of thin flat sheets
bonded together to form a composite as shown in Figure 3. Figure 3 shows two unit cells of the
composite. The volume fractions of the two materials are vj and vj- Coordinate system 1,2,3
(shown in Figure 3) has the axes 1 and 3 parallel to the material interfacial plane. Axis 2 is
normal to that plane. The stress-strain law for material i, for the generalized plane strain case, is

given by
3 [ -y - o]
ehi=q |V 1 mwi|{0 (Al)
€3 Vi Vi . 03
and
Vo= (g) T (A2)

Al



The corresponding equations for materials j are obtained be substituting j for i in equations
(A1) and (A2).

From compatibility of displacements, the composite average strains ( € 1.€ 2.&s,
¥12) arc related to the strains in materials i and j as follows:

\

-6-2 = V;€2'+Vj€2j

_ . , ) (A3)
€3 = 63' = 63’

Yi2= ViYetViTe . )

From equilibrium and resolution of forces, the composite stresses (51,6203, T12)
are related to the constituent stresses as follows:

- ; . \
G| =ViO, +V; 0

0,=0; =07
G3=ViOs'+v;03
-'T|2: Ti2= TIJZ

) (A4)

/

This system of 20 equations may be solved for the average composite stress/strain relation
as follows. First, solve for the constituent stresses using equation (A1) to get

o/] [Ai 8 B (€,
gf=| B A" B'|{ €, (A5)
oi] |8 B Ai||e€y

b

where AT =E,(1-p)/(1+p)(1=2V;)  and Bi=E;, /(1+V)(1-2D)).
Since 075 =@, . it follows that

Bi€/+Aiej+B'e, =Ble )+ Ale,i +Bley .

A2



Then, since EI =€, =€ |’ and 33 - E; — €3i
B'E, +A €, + 8333 = Bjé', + Al €, +Bjé'3 i
This equation may be rewritten as

(W) €i-(A)ed =(8)-8')E+(B'-B')E,. (AG)

Equations (A3) give another relation between € 2' and € Zj , namely,
(V;)E3+(V;) €] =€,

Solving the two foregoing equations for Gzi and 62’ gives

e, | |vBi-B) Al vi(BI-8)|[&
e[ D | viBi-8) Al Vv.(Bi-B gz — (A7)
3

where A = Al Vj + Al V;-
Combining the first three lines from (A4) with (A5) gives

§| o A% B* g7 (€ X
92 ’“'}:Vu 0 =Z/u B" A*g*|{€} —— (a®)

Oy) ke O3 B* B* A% l€5X).

b k=i
From (A3) and (A7) it follows that
€] [100](&
€ 1= Ol O €, (AS)
€3i 00 | €5

A3



(AIO)

whee  Ci=Vv (B -B')/A mi D=A/A.
Combining (A9) and (A10) gives

&) 1 o 07(E
€x'p=|C' D' C'|{€E, (Al1)
€3l 0 O I 1(&.

By interchanging i and j

)] 11 0 07(%
€lr=|ci ol cl|ig, (A12)
€] Lo o 1]|e,

whee Cl=V(B-B/)/A amd DI =A/A,

Inserting equations (A11) and (A12) into equation (A8) gives
0, A* B BRI 0 0 77(E,
Jp )= ka Bk Ak Bk Ck Dk Ck —é?.
0s) Liz; L8* X a*Jlo o 1 ]l{g,].

This represents the composite extensional stress/strain relation. The extensional
engincering constants for the composite can be obtained from the inverse of the coefficient

matrix of equation (A13)

(A1)

A4



¢, (RD-B) BE-A) (B-CD ] (o,

-— _ l A d'\-u\ y\z- w2 v\ .o_n —

-6-2 —-——DET B:;:*/:) (“AAC“) Eic f;) 0, ) — (A14)
€3 _(B -CD) BI(C-A) (AD-B )- (—)’3

where
A= V,(A+BC) + vyalsgich |
B= Vv;B'D' +V;B'D
C= viBici+n +v;Bitci+n ) (A15)
D= ViA D +VAD]
Det = A2D-2AB%+2B8%C - C°D
The elastic constants are
E,= E3= DEr/1AD-B% \
£,= Det/(A%-C? |
(A16)
Vo _ Vo _ Vos_ V2 _g(a-
E TR T = B(A-C)/Det
Via_ Vi _ 22_g2
—= —==(CD-B")/ Det ,
Ey 3 / /

The composite shear stress/strain relation is obtained as follows.

since Th=Td,T3=6'Y;2 and Tp= 61‘)’,2 then

GH M —6hHYs =0

A5



From (A3)
. i =
(Vid Y2+ Vi) Yi2 = Yia-
Solving the two previous equations for 'yl '2 and 7lé gives

G
[1‘;} '{ }7|2 (A7)

Since 7|2 = T.iz = 7'|‘2 then

T2 = ViTi2 +V; Tk

(Vi rp+(v; 61 7l

(V; G’ )(_an)+(v 6l) (_1,2)

j
%5 (Vi+ V) Vi

= (%G’) Y . (AIB)

This is the composite shear stress/strain relation which could also be obtained from the rule of
mixtures for stiffnesses in series. Equations (A13) and (A18) can be used to establish a
replacement homogeneous stiffness matrix for any such inhomogeneous element. The finite
element solution provides the nodal displacements and average strains in each element. Equations
(A3) (A7) and (A17)may then be uscd to obtain the average strains in each constituent material of
each element. The constituent stress/strain laws give the constituent stresses. Failure theories may
then be applied to each constitucnt and the interface if desired.

Note that all the foregoing equations apply even when one of the two materials is absent. In
this case the stress and strain predictions for the missing material can be ignored.
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Appendix B

(Generalized Plane Strain Transformation of Elastic Constants)

The transformation equations for plane stress and plane strain are well known (Ref. 4).
However, for the generalized plane strain case, the recognized equations are incomplete. There is
another Young's modulus, another coefficient of mutual influence, and two additional Poisson's
ratios related to the out of plane (i.e out of the plane of transformation) response. The added
Young's modulus normal to the plane of transformation is invariant with respect to the
transformation, but the two additional Poisson's ratios and the extra coefficient of mutual
influence are not invariants and their transformation equations are not commonly known. This
Appendix contains their derivation.

For the coordinate system shown in Figure 26 the stress and strain transformation
equations, for generalized plane strain, are given by (Ref. 4),

(0x) [ s o -25C "1 (O )
< Oy $= 2 ¢t o 25C <Uz > (B1)
Oz 0 0 1 0 O3
L Txy ES SC 0 cxs? | | Ti }
(0.) [ 2 1 |
| C S 0 25C Ox
ﬁO' 2 = s2 ¢ o -25C < Ty (B2)
O3 0 0 1 0 O:
\T12) |sc sc o 2] | Ty
(éx\ (2 sz o sc | (61\
2 2
< €y >: S C 0 sC { €2 \ (B3)
€2 0 0 1 0 €3
krny ] |sc 2sc o c2s? | | Y2 )

Bl



—

€1 c2 sz o sC € x
€1 2 2 0 -SC €y
& (o o 1 o €2 (84)
Y2/ |2sc s o cst| \ Ty
where S and C-designatc sin$ and cos ¢ r;spectively. The stress/strain laws in the
principal coordinates of an orthotropic material are (Ref 4)
€, ) /ey ~Vy/E2 -vy/E5 O ] (o‘uw
ﬁza = MO <02?-(85)
| | Va/B Ve, 1/ 0 ||0s
L')’nzJ |0 0 0 /62| |Tig).

In a coordinate system obtained by a rotation of ¢ degrees about the z (or 3) -axis the more
general anisotropic equations are apply; namely:

(ex \ ™ ' /Ex
< EY >___ -VXY/EX
€2 =Vxz /Ex
L%‘YJ i Txy,x/Ex
From (B2), (B3) and (B5)
[\ r 2 -
€x| |¢ s o-scl¢
€y| |s* & osc
Ty
€2 0O 0 0
2sC-2sc 0 &
M) L .

B2

nxy,Z/EZ

¢ & o0 2sc
st ¢t g -2sC
cor O

-scsc 0 ¢-¢
\'_L_JL -

~Vax [, Ux,xy/ny-
_sz/Ez ny,xy/ny<
| / E,; T}z,xy/ny
' /Gxy

»-(B6)

) — (B7)



Therefore, from (B6) and (B7) after matrix multiplication

I o g 2V|2 sS4

Ex El (GIZ )SC+ Ez
1 s4, (L1 2V|2) 22, C4
By B (GIZ 5 /SO E

* Ez-: E3
Vg — VR (g4, c4)- (L _I____l_)zz
L = 2 (%)= (g+ 576 S°C

Vi = V3| C2+'V3252

1= 2, i

G xy 2 (El BTE G

Ty, x — (_2_ +2V|2_ L)SC:S -~ (_2_+ 2V _ -—'-—)S3C
(2 Eo Ei G2

—+Ql’l2—-l—)s3c (éz Zé’:z é‘z)sc3

These are the complete transformation equations for the generalized plane strain case. The
equations preceded by an asterisk are not considered in the plane stress or plane strain case.

The reciprocal relations, from the required symmetry of the stress/strain coefficient matrix,
are given by
Vay _ Vox Ty _Thox | Ty Nxy,y
Ex Ey Gxy  Ex ' Gy Ey
Vi . Y, Yy _ Vi, T, Nxy,z
Ex Ex E: Ey Gy  Ez

The last three of these do not appear in the plane stress (or strain) case.
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(The 3-D Replacement Element Stress/Strain Relation)

Appendix C

This Appendix derives the 3-D replacement element stress/strain relation for a subclement
containing two elastically dissimilar materials. The two constituent materials are generally
anisotropic and separated by an interfacial plane that parallels the ¥.Z axes of Figure 23. The
stresses in any constituent material are assumed to be constant throughout the constituent. From
considerations of equilibrium and action/reaction across the interface the following relations exist

between the various constituent and average stress components

o

™~

S alar o

~Ci
™~
" |

3 3
lll

O"i' = O-i’
Vi 0y '+ Vj Oy’
V; Oz + V; Oy

= Vi Ti'+ V; Ty’

1= Tayr)
T;yiz Ti?l .

\

/

(C1)

From geometric compatibility the following constraint conditions apply to the constituent and

average strains.

—

[ LI J .

—
—

= =2 I ™t M

! -l
~i

NI

Ty~

Vi €'+ V; €5
€y' = €yl

= €3'= €ij.
Vi =Yy

Vi Yaz'+ v se!

Vi Yii '+ Vi e

Equations (C1) may be rewritten as

(O’
Oy
>tV

|

or

(C2)



(T3 ) (€4 ) €l )
Gy €y €y
O3 1) €z , 3

< 7;>= vi [¢] { 772}*- V; [c’“ :z? (C3)
Tz V' V=

T | 735 ws

where the matrices [Ci] and [Ci] are the cocfficicnt matrices of the constituent material stress/strain
equations in the X,¥,Z coordinate system of Figure 23. From equations (C1), (C2) and (C3)

[~ . . . N . .
C/i Ci Cig-Cih-Cils-Cls ég'_‘
Vi 0 0 Vvj 0 O ||7s
Cd Cos Cse~Ca ~Cs5—Csg '7"‘91&_
O Vi 0 0 V; 0 |Yexif~
Céi Cds Coo=Ch—Céds—Cle | | Ts’
oo vi 0 0o v |ln
' 0 -Cp-C;3-Cis 0 O (€5 )
| 0o O O O O |[|&
0 -Csp-Cs3-Csq O O [/ (C4)
o 0 0 O | O ||In
0 -Cer-CeCea O O :?i
o0 0 0 0 o 1 |\

c2



where Cppp designates (Clinn - Cimp) and Cimn is the mn th element of [Ci]. If [D] is the inverse
(obtained numerically) of the leading coefficient matrix in equation (C4) then

re X '.\ ?u ?nz [—3|3 B» BIS 516 0 ‘E.{E,;-C“ OO0 rgg ‘
ii_. P_zl P_zzE)u -9.24 5:.5 st Il 0O00O0O Ey
Ts &‘-‘ Ds Dy, Diz Dsa D D || 0 -GG Ce O O <§2 ,— (5
ﬁ eii- §4| :%[}43 ?44 _45546 000010 Zii
771, Eﬂ _Dn 9!'3 Ds. Bss ﬁsc Y -aui'-és;' 634 0O Z‘ii
75 ) D DeaDis DuaDesDaa|| © 0 0 0 O 1 | |35

where Dy, is the mn th element of [D]. Substituting values of the constituent strains from (C5)
into (C3) gives the following stress/strain law for the replacement material within the element of

Figure 23.
(T5 ) (€5 )
Oy €y
(9% = [A] (& (9)
Ty Yyz
Tit Y 5z
k ?."71 \77‘7 )
where

Rit=VilCjy B+ € Do # Clg D) +Vi(C)) Bap# )5 Ot C1g By
A12= Vi(C3) Dya * Cds Dap+ Cls D) +V;(C4 Dap+ Cs Dsp+ Cde D)
A13= Vi(C3) Dy2* C35Dz0* CagDsa) + Vi(Ca Dg* CsDsa+ Cae Ds2)
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A14=V; (C4) Dip +Cgs Daa+ Cag D) +V; (CJ) D+ C s Do+ Cli By
Ais= V;(Cd\ Dip + Cels Do+ Cslg D) +V; (Cs) Dap+Cas Dsp+ Cog Dez)
A16= V;(Cd, Dja+Ces Dost Ces D32)+V;(Cg, Dap+CdsDsa+Ces D)

Ax= Va{Cziz‘* C3 (D), &y + D13C2s +DysCz6)
+Cp5( Dz Cp +Dp3Cps + DusCag)

+Cp( D31 Cz + DaaCos + 535626)}
+V; {Czjz'F CJi (DgqyCy) + Dg3Cos + DasCa¢)
+C5( D5y Cp + Ds3Cps + Dss Cas)

+Cge( D  Cpy + De3Cas + 5cssezs)}

Ag3= V; {Czis'* Cz (D), Cy +D;3Cast Dis Csg)
+Cgs5 (Dy Cyy + D,y5C 35+ Dos Cse)
+C5 (D3 Cs; +D33Ca5+ Das Css)}

A= Vi{C2i4 +C3, (D) Cay +Dy3Cqs +Dys Cag)
+ C5(DyCqy +Dp3Cas* Dys §4e)
+C26(D3iCa1 * D33Cq5+ Das C4e)}
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i Lel(r R L= o= .= =
+Vj {C24"’ Czjl (DyC4qy + D4aCas + Dys Ca )
+ CZIS( Ds1C 4 * Ds3Cqs+ DssCag)
+C26(DgCq + DgaCas+ 665-646)}
R25= V;(C2) Dya+ Cas D pgt Co Dygh*+V; (CJ) Dagt €. Dot Cg sy

Rog= VilCZ) Dig+Cas Dyt Cog Dagh+ V, (C2, Dyt Cs DegC6 D)

A33= V; {Csi,a’f Csy (D)yCs +Dy3Cas +D5Cy¢)
+ Ca5 (D, C3; + DpaCas + DasCae)
+C36(D3C3) +D3xlas + -635636)}

+V, {C3j3+C3i| ( D4y Cs + DasCas + r)4‘.563,5)
+C 33.5 (DgiCay +Ds3Cag + DosCag)
+C36(Dg Ty + BesCas + -665636)}

A= V; {Cai4+ C31 (D) Cyy +Di3Cs5 + DisTag)
+C3s( Dy Ca, +D23C45 + D25Cag)

+C3g (D Cyy+D33Css + 535(—‘:46)}
+Vj {Cd4+Cl 1Da; T+ DasCas + DasCag)
+Cds(Ds) Cay+Ds3Cas + Ds5Cag)

+C35(Dg) Car+Dg3Cas + DesCas )}

Azs=V, (C:isl Do+ Csis Dyg+ C3is Dy )+ V; (Czjn 644"’ C3]5654"‘ 0;6564)

- i = i = i = j = j = i =
Azg= Vi (C3y Dt C3sDz6+ Cig D)+ V; (C Dag + C 35056+ C36 Dsg)
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RaamVi{ Cly+ €1 (B, Ty +Dj3Cgs + Dy5 Cas)
+ C4s(Dy Cay +DasCas + D25 Cag)
+C4(D3,Cay +D33Cas + Dis Cag )}

+VJ‘{CA;{;"’ Cq) (DgyCay +DysCas +Das Cag )
+CJs(Ds5,Cay * DssCas + Dss Cag )

+C45 (05 Cay + DeiCas + Des Cac )}
A45=Vi(C4) D)4+ C4s Dagt Ca Dag)+V; (C4, Dyt C4js Ds gt C4je Dsy)
R46= Vi(Cqy Digt Cas Dpgt Cyig Dag)+V; (€ Dag+ s Dot Cas Des)
Ass= Vi(Cs) Dig* Cgs Dagr Ceg D)+ Vi (C Dyut Cy Dsg+ ot Dzy)

Ase= Vi(Cg, Djg* Cos Doet Cog D3g)+V;(Cs) Dagt C 95 DsgtCe Dee)

Ass= Vi(Cq) Digt C's Dagh Ces Dse)+V; (C4) Dygt Cejs P Céc— Dec).

The matrix [A] is symmetric.

The replacement stress/strain equation (C6) must be transformed into the global x,y,z coordinate
system for use in forming the stiffness matrix of the replacement element. When the finite element
solution to the deformations of the unit cell is obtained the average strains in each element can be
computed. In a replacement element the average strains can be transformed into the X,Y.Z
interfacial coordinate system. Equations (C2) and (C3) will then give the average strains in each
constituent material. These strains can be transformed into the principal axis of the material and
the constituent stresses computed. Any yield or initial failure criteria can then be applied to the
constituent materials or the interface.
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Appendix D

(The 3-D Stress/Strain Transformations)

Any 3-D stress/strain coefficient matrix in the X,¥,Z coordinate system of Figure 39A can
be transformed into the global x,y,z coodinate system in two stages. The first stage consists of a
rotation of ¢ degrees about the z-coordinate axis of Figure 39A. The positive sense of rotaton
for ¢ is clockwisc to an observer at the origin looking in the positive z-direction. From the
equilibrium of triangular wedge elements whose faces are normal to the coordinate axes it can be
shown that the stresses in both coordinates are relatcd as follows

(T ) @ s2 o o o0 -25¢ |(Ox)

Oy s ¢& o o o0 2s€ oy

<Gz \ - 0 0 [ 0 0 o) <O"i P—(Dl)
Tyz 0 0 0 ¢, S 0 TY?

Txz o o0 o0 -5, ¢ © Txz

[ Txy) SIC,-S¢, 0 0 0 cc,z-sf)J 7 x7)

where S = sin ¢ and C; =cos ¢y. The reverse or inverse transformation is readily obtained
by substituting - ¢ in place of @] in the previous equations giving

_ 2 T
(0% ) ¢t s o o o0 2s5¢ |/, 1
_ 2
Oy st ¢ o o 0 -2s¢, gy
O'_
4 £ 5= ° o ¢+ o 0 0 <0'2>—-(D2)
;}.’E o 0o o0 ¢ -s, 0 Tyz
T’_‘f ©o o o s ¢ O Txz
XY 2
\ -5C §¢ O 0 0 u:,—s,z)J | x|
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By definition the two coefficient matrices in (D1) and (D2) must be the inverses of each other. The
strain transformation equations for the same rotation of ¢1 degree about the z-coordinate are
derived from geometric considerations alone and given by

( 2 2 _ ¢
Ex Cf s o 0o 0 -s¢ |[eg )
€ 2 2 -
Y 2 c2 o 0o o0 s €y
! €zl | o o t o0 o0 o €7 | —— (D3)
Yz & 0o 0 0 ¢ S \ ‘
b S0 vz
Txz 0 0 0 -5 ¢ O Y53
Yvz - 2_¢2 -
\IYZ) | asc2esc 0 0 0 «c2-sA||Yiy)
with the reverse transformation
- e2 g2 -
(€5 ) 2 s2 o o o s €y
- 2 @2 )
€y s2 ¢ 0 0 0 -s¢ €,
<ez - o o ' 0 0 o© <€z >
(" (D4)
vz 0o O ¢, -5 © Yz
'77:xz o o0 s, ¢ O Y xz
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The sccond stage of the transformation consists of a rotation of ¢ degrees about the y-
coordinatc as shown in Figurc 39B. In this casc the positive scnse of rotation for ¢, is counter
clockwise to an observer at the origin looking in the positive y-direction. The relationships
between the stresses and strains before and after this latter transformation are
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The stresses and strains in the final X,y,z-coordinates are thus related to the original stresses
and strains in the x,y,z coordinates by the following equations obtained by multiplying the
appropriate pair of coefficient matrices in equations (D3) through (D8) in the correct order.

Oy | [ciez st cis; escs,20sg-2scc, 7 (og)
Oy sici b S1S3-25(,5,-2SSC, 25,C,Cy o
<oz - S3 0 c; O 2sC, © <g~f , — ©9)
Tyz §S,C, O -SS& CC, SICrs) CS, Y7
Txz CSCy O =CSC,-SC, GICFS)-S,S, %S
Ter) [ s -se, sess -cisis, -ascss, €isbe, | (T
(g | | d& st s3 essc, acsg, e | [0
oy s ¢t o 0 0 -2s(, Oy
< TZ* \= oS SS Cho-asG -asG 2§‘C‘§§ <UZ y — (D10)
3 SCS; -SGS, O  CC, -sC,-ci-shs, | |Tyz
TS| |-CI8G-SSE, S& S(C-SP GCG-sh 2scss, | | Txz
| Txv) |7SCC SC¢& O ¢s, -s§ «€i-shc, | Txv |

(€, ) [ clet st Cst scs, -Csg -sct, | (ex )
€y s ¢t st -scs, -9s¢, scc, | |€v
€ g_ s O c3 0 s¢ O €3

< Yvz( | 2ss6 © -2s8C €S Sc-sh cs <7ﬁ ) — @1
Yxz 2CSC, O -2CSC, -SC CC3-S%) -SS, 057

(Txv) | 2ssG-2sc,  2508;-(Ch-SYs, 2568 €FSVC, 537

D4



€ ) | & S& s sse 8% XA

€Y s ¢ 0 0 0 -SC, €y

(7 g_ 02\5: STS: G - $8:C. "S5, S\C\S:- <€ Z 5 — (D12)
ﬂ’)’ﬁ | 2scs,-2scs, ©  cg, -SC -tei-sus, | (Vv

Yai | |ecisg2dse, 2sg, sei-sh c(CSh 2SS Se | [ Vxz

0431 2505, 25CC o ¢s, -ss, €}-shc, 1 Y xv)-

Note that the coefficient matrix in (D11) is the transpose of the coefficient matrix in (D10) and the

coefficient matrices in (D9) and (D12) are also transposes of each other. This fact considerably
simplifies the use of these equations. ' ‘ '
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Appendix E

(Instructions for Use of the 3-D Computer Program for Resolving Stresses in a Unit Cell)

The program REPLACE is a FORTRAN code that analyzes a 3-D unit cell structure for
the composite moduli and the internal stresses in each material of each element of the finite element
model of the unit cell. The only element in the program is the eight-node isoparametric brick
element. The stiffness matrix for this element is formed by numerical integration over eight
Gaussian integration points. The boundary conditions of structural symmetry are assumed to
apply on all faces of the unit cell.

The input data can be considered to be four different data packages. The first package
serves to establish an ad hoc file of constituent materials and their elastic properties for use in the
current run. The second data package establishes the hexagonal finite element grid for the unit cell.
The third data package contains the constituent material distribution information for each brick
clement in the finite clement grid. The last data package contains the average applied stresses to be
used for the detailed internal stress computations. Each data package will be described in the
foregoing sequence, starting with the constituent materials file.

The program operates interactively and is largely self-explanatory through the prompt
messages. The first block of input data serves to establish an ad hoc array of constituent materials
and their clastic constants for use in the current run. These constituents can be selected from the
cight scts of resident materials whose properties correspond to unidirectional high, medium and
low modulus graphite/epoxy, unidirectional glass/epoxy, bulk aluminum, bulk epoxy, etc. (see
Tablc 5). New scts of material properties can be input either by inserting new DATA statements at
the beginning of the program or by following a sequence of material input prompts.

The first piece of input data is a single digit intcger (NM) that specifies the number of
constituent materials to appear in the ad hoc list of materials for that run. Not all of the materials
on the list need to be used and the same material may appear more than once. Each material is
presumed to be orthotropic with a plane of isotropy. Thus, six elastic constants suffice to define
the linear response of the material. Whatever, additional material constants are associated with the
yicld or failure criteria must also be input. The six elastic constants (in the sequence in which they
are input and stored) are the Young's modulus in the principal reinforcing direction, the Young's
modulus in the plane of isotropy, the longitudinal/transverse Poisson's ratio, the Poisson's ratio in
the plane of isotropy, the longitudinal/transverse shear modulus, and the shear modulus in the plane
of isotropy. A maximum strain failure criteria is currently in the program. It requires four
additional constants per material. The four input constants associated with this criteria are the
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longitudinal tension and compression strain and the transverse tension and compression strain.
The initial input number of materials (NM) establishes a do loop for filling the materiel property
(MP) array that contains the ten input constants for each of the (NM) constituent materials. The
program requests a constituent material data location number for data insertion in the first row of
the MP array. If a material number between one and eight is specified then the ten material
constants from that data statement are inserted in the first row of the MP array for the properties of
what will be known subsequently as constituent material number one. If a data statement number
greater than eight is called for then the program makes ten queries for each material property to be
inserted in the first row of the MP array. This sequence is repeated until each row of the material
property array is filled. The constituent material input sequence also establishes a numbering
scheme for recalling the constituent material properties. The first row of MP array to be filled is
henceforth material number one, the second is material number two, etc.

Following the material property selection is the description of the geometry of the
rectangular finite element grid to be used in the analysis of the unit cell structure, The first input
quantity specifies the side length of the unit cell in the x-direction. The second quantity is an
integer (NBX) that specifies the number of brick elements along one side of the unit cell in the x-
direction. If NBX is greater than one then the distance of each node point from the origin in the x-
direction must be specified. This is done by specifying the x-distance from the origin to the
farthest interior point of each element that lies along the x-axis of Figure 40, starting with the
nearest element to the origin and ending with the farthest one. Each distance is designated as a
percentage of the x-side length of the unit ccll. The last distance in the x-direction is not specified,
but is assumed to be 100% of the unit cell side length in that direction. The same set of quantities
are then specified for the y-direction of the unit ccll grid and then repeated once more for the z-
direction. This establishes the finite element gnd.

It remains to describe the material distribution within each brick element. This is
done by means of a triple nested do loop starting with the brick element closest to the origin
of Figure 40. The material distribution within that element is described in its entirety
before the inner do loop indexes to the next element in the plus z-direction for the same
material distribution data. This inner do-loop continues to index in the z-direction until the
last element touching the z-axis is fully described. The middle do-loop then indexes to the
second brick element (from the origin) along the y-axis. The inner do-loop once again
ranges over each element in this second stack of brick elements, requisitioning materials -
information for each in the same sequence. When each z-stacking of brick elements along
the x=0 face of the unit cell is described then the outer do-loop indexes to the next brick
element along the x-axis and the two inner do-loops are restarted. Now consider the way
the distribution of material in each brick element is described.
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The material distribution within a brick element must be reducible to a series of
constituent material junctions as shown in Figure 35A. Each branch or trunk represents a
different material with the two branch materials combined to form the trunk material (as
described in Appendix C). The main trunk of the tree structure represents the single
material to be used in that element stiffness matrix calculation.

The tree structure can,in principal, be as complex as necessary as long as each
junction contains no more than two branches and one trunk. However, in practice, each
finite element has its tree structure limited to two junctions. No more complexity was
required for the example problems considered. With this limitation a finite element can not
contain more than three different constituent materials, as shown in Figure 35C. Each of
the three outer branches must contain a single constituent material chosen from one of the
sets of material properties established in the MP array. The description of the outer branch
consists of the material designation number, corresponding to the MP row number, and the
pair of spherical coordinate angles (1, ¢2) that specify the grain or fiber direction, as
shown in Figure 39. Each junction must also contain a description of the volume fraction
of each branch and the pair of spherical coordinate angles (/ 1,/2) that specify the
direction of the normal to the intcrfacial plane separating the two branch materials (see
Figure 23). Before inputting any unit cell analysis problem the tree structure of each finite
element should be sketched and labeled as shown in Figure 35.

In summary, fifteen data values are needed to describe the most general two-
junction material arrangement in each element. These numbers are prompted and input in
the following sequence (with reference to Figure 35A):

a) material property (MP) array row designation for branch CD
b) spherical angle ¢ for fiber direction in branch Q)

c) spherical angle ¢ for fiber direction in branch (D)

d) material property (MP) array row designation in branch @
¢) spherical angle ¢ for fiber direction in branch (2)

f) spherical angle ¢ for fiber direction in branch (2)

g) volume fraction of branch (1) material at junction @)

h) spherical angle |, for interfacial normal at junction (A)
i) spherical angle W for interfacial normal at junction (@A)

j) material property (MP) array row designation for branch (3
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k) spherical angle ¢ {for fiber direction in branch (@)
1) spherical angle ¢ for fiber direction in branch (3)

m) volume fraction of branch (3) material at junction (B)
n) spherical angle 1 for interfacial normal at junction (B
o) spherical angle W+ for interfacial normal at junction (B

If there is only one junction in an element (or no junctions) less input information is
needed. For one junction only the first nine inputs ((a)-(i)) are needed. For no junctions
only the first three inputs ((a)-(c)) are needed. To trigger the correct set of prompts, the
first piece of input data for any element is the integer 0 through 2 that specifies the number
of junctions in the tree structure. Then the appropriate set of prompts will automatically
follow in the foregoing sequence. All angles are to be specified in degrees and decimal
fractions of a degree. Volume fractions of materials are specified in decimal fractions form
(0.0 to 1.0.) This completes the description of the material content of each element. The
stress output for each element is given in the reverse order of the sequence of junction
descriptors. The stresses are given in the principal axes of the constituent material. Each
material will also have its minimum margin of safety computed based on a maximum
strain criteria (with respect to the principal axes of the material).

The only remaining input is the specification of the six components of the 3-D,
applied, far-field stresses for which the internal stresses in each material in each element are
to be computed.

The 3-D weave (or XYZ material) serves as a simple example for controlling and
responding to the unit cell analysis program input prompts. The composite consists of
three sets of unidirectional graphite/epoxy tows interspersed as shown in Figure 24. The
tows in the x,y and z direction are all of a different size. The x-direction tow fills 25% of
the unit cell. The y-direcrion tow fills 37.5% of the unit cell. The z-direction tow fills
12.5% of the unit cell. The remaining 25% of the volume is bulk epoxy. The finite element
mesh could easily be adjusted so that each element was homogeneous. However, for
illustrative purposes the mesh will be set up such that there are three inhomogeneous
clements (out of a total of eight) each containing two different constituent materials. The
grid is chosen such that all the finite elements have the same dimensions, and there are two
clements stacked in each coordinate direction. There are only two materials needed:
unidirectional graphite/epoxy (the first material among the DATA statements) and bulk
epoxy (the sixth material in the DATA statements). Thus, the first three input integers
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declare that two materials are needed and that they are constituent materials number one
and six. Since material one was listed first it becomes material number one for the rest of
the run. Material six hereafter becomes material number two. A printout of the series of
program prompts and responses are given at the end of this Appendix along with the
stiffness and stress output. The input is echoed in double parentheses to distinguish it from
the prompts. The unit cell dimensions are 2.0 units in the x,y and z-directions. The center
node point along each edge of the unit cell divides the edge into two equal lengths. The
exploded sketch of Figure 28 shows the sequence in which the eight elements are
described. Elements () , (@ and (@) arc inhomogeneous.

The first element contains both constituent materials: unidirectional graphite/epoxy
and bulk epoxy, in equal volumes. The fiber direction angles are ¢1=0° and $2=90° for
material () . The volume fraction for material one is 0.5. Any direction angles can be
specified for material two, the isotropic bulk epoxy. In this case $1=0° and ¢»=0° were
specificd. The interfacial normal has Y1 = Y2 = 00 as its direction. This information
fully describes the material content of the first element.

Element two contains only one constituent material, but half of the fibers are going
in the y-dircction and half are going in the z-direction. This can be represented by a single
junction with both branches made from constituent material number one. One branch has
fiber dircction angles of ¢ 1= 00 and 2= 900. The other branch has fiber direction angles
of ¢1= 90° and ¢ = 0°. The volume fraction of branch (D material is 0.5 and the
interfacial normal has the dircction angles Wy = 00 and Y2 =0°.

The third element is homogeneous in material one with no junctions. The fiber
directions are 1= =00.

The fourth element differs from the first only in the fiber direction angles. The rest
of the elements are homogencous with no junctions.

The average applied stress is 1000 psi tension in the x-direction with the other stress
components equal to zcro.

The output consists of the composite moduli and the stresses in the principal axes of
each constituent material in each element. Minimum margins of safety are also given.
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INPUT NO. COMPOSITE MATERIALS NEEDED,NM

(( 2))
SELECT A MATERIAL NUMBER FROM ONE TO TEN

(({ 1))
SELECT A MATERIAL NUMBER FROM ONE TO TEN

(( 61))
MATERIAL PROPERTY DATA ECHO

18000000.00 1500000.00 0.23 0.30 700000.00 700000.00
0.1000E-01 0.1000E-01 0.1000E-01 0.1000E-01
500000.00 500000.00 0.35 0.35 180000.00 180000.00

0.1000E-01 0.1C000E-01 0.1000E-01 0.1000E-01

INPUT SIDE LENGTH OF UNIT CELL IN X DIR.
(( 2.0))

INPUT NO. SUBCELLS (X DIR.) IN UNIT CELL
(« 2))

INPUT DIST. (%) ORIGIN TO UNIT CELL NODE 2
{(50.0))

INPUT SIDE LENGTH OF UNIT CELL IN Y DIR,
{({( 2.0))

INPUT NO. SUBCELLS (Y DIR.) IN UNIT CELL
(( 2))

INPUT DIST. (%) ORIGIN TO UNIT CELL NODE 2
{(50.0))

INPUT SIDE LENGTH OF UNIT CELL IN Z DIR.
(( 2.0))

INPUT NO. SUBCELLS (Z DIR.) IN UNIT CELL
(¢ 2))

INPUT DIST. (%) ORIGIN TO UNIT CELL NODE 2
((50.0))

INPUT NUMBER OF JUNCTIONS AT LOCATION 1 1 1
(¢ 1))

INPUT MATL. NO. 1 AT 1 1 1
(¢ 1))

INPUT 1ST FIBER SPHERICAL ANGLE
(L 0.0M)

INPUT 2ND FIBER SPHERICAL ANGLE
((90.0))

INPUT MATL. NO. 2 AT 1 1 1
(«( 2))

INPUT 1ST FIBER SPHERICAL ANGLE
(¢ 0.0))

INPUT 2ND FIBER SPHERICAL ANGLE
((0.0))

INPUT 1ST MATL. VOLUME FRACTION
(¢ 0.5))

INPUT 1ST INTERFACIAL NORMAL ANGLE
(¢ 0.0))

INPUT 2ND INTERFACIAL NORMAL ANGLE
(( 0.0))

INPUT NUMBER OF JUNCTIONS AT LOCATION p 1 2
(¢ 1))

INPUT MATL. NO. 1 AT 1 1 2
(¢ 1))

INPUT 1ST FIBER SPHERICAL ANGLE
(( 0.0))

INPUT 2ND FIBER SPHERICAL ANGLE
((30.0))

INPUT MATL. NO. 2 AT 1 1 2
(¢ 1))

INPUT 1ST FIBER SPHERICAL ANGLE



((90.0))
INPUT 2ND FIBER SPHERICAL ANGLE

({

0.0))

INPUT 1ST MATL. VOLUME FRACTION

((

0.5))

INPUT 1ST INTERFACIAL NORMAL ANGLE

({

0.0))

INPUT 2ND INTERFACIAL NORMAL ANGLE

1

INPUT
((

0.0))

NUMBER OF JUNCTIONS
0))

SPECIFY THE CURRENT MATL.

((
INPUT
({
INPOT
((

INPUT
{(

1))

1ST FIBER SPRERICAL
0.0))

2ND FIBER SPHERICAL
0.0))

NUMBER OF JUNCTIONS
1)

INPUT MATL. NO. 1 AT 1
(¢t 2))

INPUT 1ST FIBER SPHERICAL
(( 0.0))

INPUT 2ND FIBER SPHERICAL
(¢ 0.0))

INPUT MATL. NO. 2 AT 1
(¢ 1)

INPUT 1ST FIBER SPHERICAL
{(90.0))

INPUT 2ND FIBER SPHERICAL

INPUT
((

0.0))

AT LOCATION 1
ID. NO.

ANGLE

ANGLE

AT LOCATION 1
2 2

ANGLE

ANGLE
2 2

ANGLE

ANGLE

1ST MATL. VOLUME FRACTION

0.5))

1ST INTERFACIAL NORMAL ANGLE

0.0))

2ND INTERFACIAL NORMAL ANGLE

0.0})

NUMBER OF JUNCTIONS
0))

AT LOCATION 2

SPECIFY THE CURRENT MATL. ID. NO.

((
INPUT
({
INPUT
((

INPUT
((

2))
1ST FIBER SPHERICAL
0.0))
2ND FIBER SPHERICAL
0.0))

NUMBER OF JUNCTIONS
0))

SPECIFY THE CURRENT MATL.

((
INPUT

1))
1ST FIBER SPHERICAL

((90.0))

INPUT
{(

INPUT
((

2ND FIBER SPHERICAL
0.0))

NUMBER OF JUNCTIONS
0))

SPECIFY THE CURRENT MATL.

({

INPUT 1ST FIBER SPHERICAL

((

INPUT 2ND FIBER SPHERICAL

((

1))
0.0))
0.0))

ANGLE

ANGLE

AT LOCATION 2
ID. NO. -
ANGLE

ANGLE

AT LOCATION 2
ID. NO.
ANGLE

ANGLE
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INPUT NUMBER OF JUNCTIONS AT LOCATION 2 2 2
(¢ 0
SPECIFY THE CURRENT MATL. ID. NO.
(¢« 1)
INPUT 1ST FIBER SPHERICAL ANGLE
{(90.0))
INPUT 2ND FIBER SPHERICAL ANGLE
(( 0.0))

ELASTIC CONSTANTS OF THE COMPOSITE

EX,EY,EZ = 5459114.00 7546501.50 3438649.50
MUYZ,MUXZ, MUXY = 0.1276 0.1300 0.0544
MUZY, MUZX, MUYX = 0.0581 0.0819 0.0752

INPUT APPLIED STRESSES IN X,Y,Z COORDINATES

INPUT X NORMAL STRESS
({ 1000.0})

INPUT Y NORMAL STRESS
(( ¢.on

INPUT 2 NORMAL STRESS
(( 0.0

INPUT YZ SHEAR STRESS
(( 0.0))

INPUT XZ SHEAR STRESS
(( 0.0))

INPUT XY SHEAR STRESS
(( 0.0))

STRESSES IN ELEMENT NO. 1 1 1
MATERIAL NO. 1

NORMAL 1,2,3 -377.26 32.66 179.47
SHEAR 23,13,12 -0.49 0.70 0.48
MINIMUM MARGIN OF SAFETY IS 0.9976

STRESSES IN ELEMENT NO. 1 1 1
MATERIAL NO. 2

NORMAL 1,2,3 179.47 86.62 81.30
SHEAR 23,13,12 0.12 -0.70 0.49
MINIMUM MARGIN OF SAFETY 1S 0.9759

STRESSES IN ELEMENT NO. 1 1 2
MATERIAL NO. 1

NORMAL 1,2,3 -348.27 66.55 292.88
SHEAR 23,13,12 -5.62 -5.46 0.35
MINIMUM MARGIN OF SAFETY IS 0.9976

STRESSES IN ELEMENT NO. 1 1 2
MATERIAL NO. 1

NORMAL 1,2,3 -96.79 292.88 50.10
SHEAR 23,13,12 -5.46 0.35 -5.62
MINIMUM MARGIN OF SAFETY 1S 0.9990

STRESSES IN ELEMENT NO. 1 2 1
MATERIAL NO. 1
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NORMAL 1,2,3 3337.00
SHEAR 23,13,12 -0.30
MINIMUM MARGIN OF SAFETY IS

STRESSES IN ELEMENT NO.
MATERIAL NO. 2
NORMAL 1,2,3 190.64
SHEAR 23,13,12 -0.11
MINIMUM MARGIN OF SAFETY IS

STRESSES IN ELEMENT NO.
MATERIAL NO. 1
NORMAL 1'2'3 -135-34
SHEAR 23,13,12 -1.15
MINIMUM MARGIN OF SAFETY IS

STRESSES IN ELEMENT NO.
MATERIAL NO. 2
NORMAL 1,2,3 134.54
SHEAR 23,13,12 -0.30
MINIMUM MARGIN OF SAFETY IS

STRESSES IN ELEMENT NO.
MATERIAL NO. 1
NORMAL 1,2,3 -106.32
SHEAR 23,13,12 -5.07
MINIMUM MARGIN OF SAFETY IS

STRESSES IN ELEMENT NO.
MATERIAL NO. 1
NORMAL 1,2,3 3307.09
SHEAR 23,13,12 0.81
MINIMUM MARGIN OF SAFETY IS

STRESSES IN ELEMENT NO.
MATERIAL NO. 1
SHEAR 23,13,12 -1.68
MINIMUM MARGIN OF SAFETY IS

E9

1

2

62.39
1.68
0.9816

91.97
1.15
0.9744

190.64
-0.42
0.9990

61.80
~0.54
0.9813

2

282.81
-0.75
0.993%0

61.25
0.53
0.9818

2
275.56

1.24
0.9990

47.98
1.93

86.67
~1.28

17.88
1.28

55.90
0.21

49.86
-5.87

44.10
1.53

46.96
2.88






Appendix F
(FORTRAN Program Listing)
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PROGRAM REPLACE

ccccccceccceeecceeeccececccccceceeceeeceececeececececeeee
CCcCecececeeceeeeeeccccceccceccecccccecccceeeccceeeeececeece
CC  PROGRAM TO COMPUTE THE 3-D INTERNAL STRESSES CC
cC IN A UNIT CELL OF AN INCLUSION ARRAY ccC
cccccceceecceececcececceececceececeeeeeeeeceeeecceececeee

ccceeeccececceeccecececcecceeecccceccecececececeeeeecee

SPECIFICATION STATEMENTS

OOO00D0O0O0ONDOO

PARAMETER (MM=10,MMM=300, NNN=400)
REAL MP(8,10),KS(24,24)
DIMENSION SK(24,24),UVWS(24)
DIMENSION KA(7),LC(24)
DIMENSION TS(6),TSS(6),TS1(6),TS2(6),ST1(6),ST2(6)
DIMENSION SIG(6),STN(6)
DIMENSION PR(6,6),RP(6,6),T(6,6),BIG(6, 6)
DIMENSION DD(6,6),DD1(6,6),DD2(6,6)
DIMENSION SS(6,6),5S1(6,6),552(6,6)
DIMENSION SSS1(6,6),S5S2(6,6)
DIMENSION BM(6,24),DB(6,24)
DIMENSION PROP(MM,10),DX(MM),DY (MM),DZ(MM)
DIMENSION FDX(MM+1),FDY (MM+1l),FDZ (MM+1)
DIMENSION FB(NNN,7),FS(MMM,7),FT(6,7),TF(6,7),FTT(6,6)
DIMENSION UVW(NNN, 6), VU(NNN)
DIMENSION MNI(MM,MM,MM),MNz(MM,MM,MM),MN3(MM,MN,MM)
DIMENSION FV1 (MM, MM, MM} , FV2 (MM, MM, MM) , NJC (MM, MM, MM)
DIMENSION ANG1A (MM, MM, MM) , ANG2A (MM, MM, MM) , ANG3A (MM, MM, MM)
DIMENSION ANG1B (MM, MM, MM) , ANG2B (MM, MM, MM) , ANG3B (MM, MM, MM)
DIMENSION ACNIA(MM,MM,MM),AGNZA(MM,MM,MM)
DIMENSION AGN1B (MM, MM,MM),AGN2B (MM, MM, MM)
REAL KB (NNN, NNN), KM (MMM, NNN) , KN (MMM, MMM)
C
C BUILT IN MATERIAL PROPERTY DATA
C .
DATA (KA(I),I=1,7)/10,6,6,1,6,0,0/,
(MP(l,I),I-1,10)/18.EG,1.5€6,.23,.30,.786,.7E6,.01,.01,.01,.01/,
(MP(2, I) ,I-lglo) /2.157,1.7E6' '23' 030' -756, 07E6' .01, -01, 001' ¢°1/'
(MP(3,I),I-I,IO)/3.0E7,1.7ES,.23,.30,.756,.756,.01,.01,.01,.01/,
(MP(4,1),1-1,10)/1.0E7,1.5E6, .25, .35, .7E6, .7E6, .01, .01, .01, .01/,
(MP(5,1),1=1,10)/1.2E7,1.5E6, .25, .35,,7E6,.7E6, .01, .01, .01, .01/,
(MP(6, I) ' 1-1,10)/ .SEG; -SEG, -35, 035' 01836' -1826’ -01' -01, -01' 001/'
(MP(7,1),1=1,10)/1.E7,1.E7,.30,.30, .4E7, .4E7,.01,.01,.01,.01/,
(MP(8,1),I=1,10)/1.E7,1.E7,.25,.25, .4E7, .4E7,.01,.01, .01, .01/

D JONU D WA

o
C INITIALIZE VARIABLES
C
ISYM=0
DO 10 I=1,MMM
DO 10 J=1,7
10 FS(I,J)=0.0
DO 12 I=~1,MMM
PO 12 J=1,MMM
12 KN(I,J)=0.0
DO 15 I=1,6
DO 15 J=1,7
TF(I,J)=0.0
15 FT(I,J)=0.0
WRITE(6,9100)
READ(5,9030) NM
WRITE (6,9899) NM
C
C MATERIAL PROPERTY DATA INPUT
C

F2



DO 18 I=1,NM
WRITE (6,9180)
READ(5,9030) M
WRITE (6,9899) M
IF(M.GT.8) THEN
WRITE(6,9120)
READ(5,9010) PROP(I,1)
WRITE (6,9130)
READ(5,9010) PROP(I,2)
WRITE (6,9140)
READ(5,9010) PROP(I,3)
WRITE(6,9150)
READ (5,9010) PROP(I,4)
WRITE (6,9160)
READ(S, 9010) PROP(I,S)
WRITE (6,9170)
READ(5,9010) PROP(I,6)
WRITE(6,9179)
READ (5, 9015) PROP(I,7)
WRITE(6,9177)
READ (5,9015) PROP(I,8)
WRITE (6,9178)
READ (5, 9015) PROP(I,9)
WRITE (6,9179)
READ (5, 9015) PROP(I,10)
END IF
IF(M.LE.8) THEN
DO 17 J=1,10
17 PROP (I, J)=MP(M,J)
END IF
18 CONTINUE
WRITE(6,9560)
WRITE (6,9190)
DO 19 I=1,NM
WRITE(6,9020) (PROP(I,J),J=1,6)
19 WRITE(6,9025) PROP(I,?),PROP(I,8),PROP(I,9),PROP(I,10)
C
C READ MESH GEOMETRY
C
WRITE (6, 9560)
WRITE (6,9440)
READ (5, 9000) XL
WRITE (6,9898) XL
WRITE(6,9080)
READ (5,9030) NBX
WRITE(6,9899) NBX
FDX(1)=0.0
FDX (NBX+1)=100.0
IF(NBX.LE.1) GO TO 25
DO 22 I=~1,NBX-1
WRITE(6,9460) I+l
READ(5,9000) FDX(I+1)
22 WRITE(6,9898) FDX(I+1)
25 CONTINUE
WRITE (6,9560)
WRITE(6,9450)
READ (5, 9000) YL
WRITE (6,9898) YL
WRITE (6,9090)
READ (5,9030) NBY
WRITE(6,9899) NBY
FDY(1)=0.0
FDY (NBY+1)=100.0
IF(NBY.LE.1) GO TO 35
DO 30 I=-1,NBY-1
WRITE (6,9460) I+1
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30
35

130
135

230

240
250

READ (5,9000) FDY(I+1)
WRITE (6,9898) FDY(I+l)
CONTINUE

WRITE (6, 9560)

WRITE (6,9455)

READ (5,9000) 2L

WRITE (6,9898) 2L

WRITE (6,9095)
READ (S5, 9030) NB2

WRITE (6,9899) NBZ
FDZ2(1)=0.0

FDZ (NB2+1)=100.0
IF(NBZ.LE.l) GO TO 135
DO 130 I=1,NB2-1

WRITE (6,9460) I+l
READ (5, 9000) FDZ(I+1l) -
WRITE (6,9898) FDZ(I+1)
CONTINUE

NP= (NBX+1) * (NBY+1) * (NBZ+1)*3

DO 230 I=-1,NP
DO 230 J=1,6
UVW (I, J}=0.0
DO 250 I=1,NNN
DO 240 J=1,7
FB(I,J)=0.0

DO 250 J=1,NNN
KB(I,J)=0.0

C
cccceeeccecccccceccccceeccececccecceccceccecceccceececeeecceee

o

BEGIN QUTER DO LOOP OVER THE NO.

OF BRICX ELEMENTS

C

€ceeceecececcceeeeecceeceecceccceeeccecccceceecceeccecceeeceececee
c

C GET

260
c

C INPUT TYPE OF MATERIAL JUNCTION IN THE ELEMENT (0,1,0R 2)

C

DO 2400 I=1,NBX
DO 2400 J=1,NBY
DO 2400 K=1,NBZ

ELEMENT DIMENSIONS

A=FDX(I+1)~FDX(I)
A=A*XL/100.
AA=Q.5*A
DX(1)=0.0

DX (2)=A

B=FDY (J+1) -FDY (J)
B=B*YL/100.
BB=0.5*B
DY(1)=0.0

DY (2)=B

C=FDZ (K+1)~FDZ (K)
C=C*ZL/100.
CC=0.5*C
DZ(1)=0.0
DZ(2)=C
VOL=A*B*C

DO 260 II=1,24
DO 260 JJ=1,24
KS(I1,JJ)=0.0

WRITE (6,9560)
WRITE (6,9060) I,J, K
READ(5,9030) NJC(I,J,K)

WRITE (6,9899) NJC(I,J,K)

JNC=NJC (I, J,K)

F4



C
C INPUT MATERIAL TYPE AND FIBER DIRECTION ANGLES (ONLY BRANCH)
C
IF(JNC,LT.1) THEN
WRITE (6,9320)
READ (5,9030) MN1(I,J,K)
MN=MN1(I,J,K)
WRITE (6,9899) MN1(I,J,K)
WRITE (6,9480)
READ (5, 9000) Al
ANG1A(I,J,K)=Al
WRITE (6,9898) Al
WRITE (6,9490)
READ (5, 9000) A2
ANG1B(I,J, K)=A2
WRITE(6,9898) A2
CALL TRANS2(Al,A2,T)

GET STRESS-STRAIN MATRIX (SS) IN MATL. COORD. SYSTEM
CALL GETSS (MM,MN, PROP, SS)

GET STRESS~-STRAIN MATRIX (SS) IN GLOBAL COORDINATES

OO0 OO0

DO 290 II=1,6

DO 290 JJ=1,6

SuM=0.0

DO 280 KK=1,6
280 SUM=SUM+SS (II,KK) *T (KK, JJ)
290 PR(II,JJ)=SUM

DO 300 II=-1,6

DO 300 JJ=1,6

SUM=0.0

DO 295 KK=1,6
295 SUM=SUM+T (KK, II) *PR (KK, JJ)
300 BIG(II,JJ)=SUM

END IF

INPUT MATERIAL TYPE AND FIBER DIRECTION ANGLES (FIRST BRANCH)

[eXs K¢l

IF(JNC.GE.1l) THEN
WRITE(6,9700) I,J,K
READ (5, 9030) MN1(I,J,K)
WRITE (6,9899) MN1(I,J,K)
MN=MN1 (I, J,K)

WRITE (6,9480)

READ (5, 9000) ANG1A(I,J,K)
WRITE(6,9898) ANGlA(I,J,K)
Al=ANGlA(I,J,K)
WRITE (6, 9490)

READ (5, 9000) ANG1B(I,J,K)
WRITE(6,9898) ANG1B(I,J,K)
A2=ANG1B(I,J,K)

GET STRESS-STRAIN MATRIX (SS) IN MATL. COORD. SYSTEM
CALL GETSS(MM,MN, PROP, SS)

GET STRESS-STRAIN MATRIX (SS) IN GLOBAL COORDINATES

oo o000

CALL TRANS2(Al,A2,T)
DO 400 II=1,6

DO 400 JJ=1,6
SUM=0.0

DO 350 KK=1,6
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350
400

440
450

(e RgKg]

GET

QOO0 OO0

490
500

540
550

SUM=SUM+SS (11, KK) *T (KK, JJ)
PR(II,JJ)=SUM

DO 450 II=1,6

DO 450 JJ=1,6

SUM=0.0

DO 440 KK=1,6
SUM=SUM+T (KK, II) *PR (KK, JJ)
SS1(II,JJ)}=SUM

INPUT MATERIAL TYPE AND FIBER DIRECTION ANGLES (SECOND BRANCH)

WRITE(6,9710) I,J,K
READ(S, 9030) MN2(I,J,K)
WRITE (6,9899) MN2(I,J,K)
MN=MN2 (I, J,K)

WRITE (6, 9480) :
READ (5, 9000) ANG2A(I,J,K)
WRITE(6,9898) ANG2A(I,J,K)
Al=ANG2A (I, J,K)

WRITE (6,945%0)

READ (5, 9000) ANG2B(I,J,K)
WRITE (6,9898) ANG2B(I,J, K)
A2=ANG2B(I,J,K)

STRESS-STRAIN MATRIX (SS) IN MATL. COORD. SYSTEM /
CALL GETSS(MM,MN, PROP,SS)
STRESS-STRAIN MATRIX (SS) IN GLOBAL COORDINATES

CALL TRANS2(Al,A2,T)

DO 500 II-1,6

DO 500 JJ=1,6

SUM=0.0

DO 490 KK=1,6
SUM=SUM+SS (II,KK) *T (KK, JJ)
PR{II,JJ)=S5UM

DO 550 II=1,6

DO 550 JJ=1,6

SUM=0.0

DO 540 KK=1,6
SUM=SUM+T (KK, II) *PR (KK, JJ)
$S2(1I,JJ)=SUM

c
C INPUT FIRST BRANCH VOL. FRACTION AND INTERFACE NORMAL ANGLES

C

C GET

WRITE (6, 9720)

READ (5, 9000) FV1(I,J,K)
WRITE (6,9898) FV1(I,J,K)
V1=FV1(I,J,K)

v2=1.0-V1

WRITE (6,9485)

READ (5,9000) AGN1A(I,J,K)
WRITE (6,9898) AGN1A(I,J,K)
Al=AGN1A(I, J,K)

WRITE (6,9495)

READ (5, 9000) AGN1B(I,J,K)
WRITE (6,9898) AGN1B(I,J,K)
A2=AGN1B(I,J,K)

STRESS-STRAIN MATRICES (SS) IN INTERFACIAL COORDINATES
CALL TRANS1(Al,A2,T)
DO 600 II=1,6

DO 600 JJ=1,6
SUM=0.0
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590
600

640

650
c

c

740
750

GET

[eNeXe!

780
790

840
850

C

TUM=0.0

DO 590 KK=1,6
SUM=SUM+SS1 (II, KK) *T (KK, JJ)
TUM=TUM+S52 (I1I,KK)*T (KK, JJ)
RP(II,JJ)=SUM
PR(II,JJ)=TUM

DO 650 II=~1,6

DO 650 JJ=1,6

SUM=0.0

TUM=0.0

DO 640 KK-I,G
SUM=SUM+T (KK, II) *RP (KK, JJ)
TUM=TUM+T (KK, II) *PR (KK, JJ)
§SS1(II,JJ)=SUM
§852(I1,JJ)=TUM

C DO REPLACEMENT MATERIAL SUBSTITUTION AT FIRST JUNCTION

CALL GETDD(SSS1,SSS2,V1,Vv2,DD1,DD2)

DO 750 II=1,6

DO 750 JJ=1,6

DUM=0.0

DO 740 KK=1,6
DUM=DUM+V1*S§SS1 (II,KK) *DD1 (KK, JJ) +V2%SSS2 (I1I, KK) *DD2 (KK, JJ)
DD(I1I,JJ)=DUM

REPLACEMENT STRESS-STRAIN MATRIX (SS) IN GLOBAL COORDINATES

CALL TRANS2(Al,A2,T)

DO 790 II=1,6

DO 790 JJ=1,6

SUM=0.0

DO 780 KK=1,6
SUM=SUM+DD (II,KK) *T (KK, JJ)
PR(II,JJ)=SUM

DO B850 II=~1,6

DO B850 JJ=1,6

SUM=0.0

DO 840 KK=1,6
SUM=SUM+T (KK, II)*PR (KK, JJ)
BIG(II,JJ)=SUM

END IF

C INPUT MATERIAL TYPE AND FIBER DIRECTION ANGLES (THIRD BRANCH)

o

C GET

C GET

IF (JNC.EQ.2) THEN
WRITE(6,9715) I,J,K
READ(5,9030) MN3(I,J, K)
WRITE(6,9899) MN3(I,J,K)
MN=MN3(I,J,K)
WRITE(6,9480)

READ (5,9000) ANG3A(I,J,K)
WRITE (6,9898) ANG3A(I,J,K)
Al=ANG3A(I,J,K)

WRITE (6,9490)

READ (5,9000) ANG3B(I,J,K)
WRITE (6,9898) ANG3B(I,J,K)
A2=ANG3B(I,J,K)

STRESS-STRAIN MATRIX (SS) IN MATL. COORD. SYSTEM
CALL GETSS (MM, MN, PROP, SS)
STRESS-STRAIN MATRIX (SS) IN GLOBAL COORDINATES

CALL TRANS2(Al,A2,T)
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c

1350
1400

1440
1450

1550

DO 1400 II=1,6

DO 1400 JJ=1,6

SUM=0.0

DO 1350 KK=1,6
SUM=SUM+SS (II,KK) *T (KK, JJ)
PR(II,JJ)=SUM

DO 1450 II=1,6

DO 1450 JJ=1,6

SUM=0.0

DO 1440 KK=1,6
SUM=SUM+T (KK, II)*PR (KK, JJ)
S$S1(II,JJ)=SUM

DO 1550 II=1,6

DO 1550 JJ=1,6
$82(II1,JJ)=BIG(II,JJ)

C INPUT LAST BRANCH VOL. FRACTION AND INTERFACE NORMAL ANGLES

C

C GET

1590
1600

1640
1650

WRITE (6,9720)

READ(S,9000) FV2(I,J,K)
WRITE (6,9898) FV2(I,J, K)
V1=FV2(I1,J,K)

V2=1,0-V1

WRITE (6,9480)

READ(S, 9000) AGN2A(I,J,K)
WRITE (6,9898) AGN2A(I,J, K)
Al=AGN2A(I, J,K)

WRITE (6, 9490) ’
READ (5, 9000) AGN2B(I, J,K)
WRITE (6,9898) AGN2B(I,J, K)
A2=AGN2B (I, J,K)

STRESS-STRAIN MATRICES (SS) IN INTERFACIAL COORDINATES

CALL TRANS1 (Al,A2,T)

DO 1600 II=1,6

DO 1600 JJ=1,6

SUM=0.0

TUM=0.0

DO 1590 KK=1,6
SUM=SUM+SS1(II,KK)*T(KK,JJ)
TUM=TUM+SS2 (II,KK) *T (KK, JJ)
RP(II,JJ)=SUM
PR(II,JJ)=TUM

DO 1650 II=1,6

DO 1650 JJ=1,6

SUM=0.0

TUM=0.0

DO 1640 KK=1,6
SUM=SUM+T (KK, II) *RP (KK, JJ)
TUM=TUM+T (KK, II) *PR (KK, JJ)
S§SS1(I1I,JJ)=SUM
S$SS2(II1,JJ)=TUM

c
C DO REPLACEMENT MATERIAL SUBSTITUTION AT SECOND JUNCTION

c

c

1740

CALL GETDD(SSS1,SSS2,Vv1,Vv2,DD1,DD2)

DO 1750 II=1,6

DO 1750 JJ=1,6

DUM=0.0

DO 1740 KK=1,6
DUM=DUM+V1*SSS1 (II, KK) *DD1 (KK, JJ) +V2*SSS2 (11, KK) *DD2 (KK, JJ)

1750 DD(II,JJ)=DUM

C GET REPLACEMENT STRESS-STRAIN MATRIX (SS) IN GLOBAL COORDINATES

c
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CALL TRANS2 (A1,A2,T)

DO 1790 I1I=1,6

DO 1790 JJ=1,6

SUM=0.0

DO 1780 KK=1,6
1780 SUM=SUM+DD (II,KK)*T (KK, JJ)
1790 PR(II,JJ)=SUM

DO 1850 II=1,6

DO 1850 JJ=1,6

SUM=0.0

DO 1840 KK=1,6
1840 SUM=SUM+T (KK, IT)*PR (KK, JJ)
1850 BIG(II,JJ)=SUM

END IF
1900 CONTINUE

c .
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C BEGIN INTEGRATION SCHEME TO GET ELEMENT STIFFNESS MATRIX C
C INNER DO LOOP OVER EACH INTEGRATION POINT BEGINS HERE C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
c

DO 2000 II=1,2

DO 2000 JJ=1,2

DO 2000 KK=1,2

DO 1920 III=1,6
DO 1920 JJJ=1,24
1920 BM(III,JJJ)=0.0

C
C SUBCELL GEOMETRY CALCULATIONS
c
X=0.57735*AA
IF(II1.EQ.1) X==X
Y=0.57735*BB
IF(JJ.EQ.1) Y=-¥
2«0.57735*CC
IF(KK.EQ.1l) 2=-2
c
C DO GAUSSIAN INTEGRATION SCHEME
c

CALL GETB(AA,BB,CC,X,Y,Z,BM)
DO 1930 III=1,6
DO 1930 JJJ=1,24
DB(III,JJJ)=0.0
DO 1930 KKK=1,6
1930 DB(III,JJJ)=DB(III,JJJ)+BIG(III,KKK)*BM(KKK,JJJ)
DO 1950 III=1,24
DO 1950 JJJ=1,24
DO 1950 KKK=1,6
1950 KS(III,JJJ)=KS(III,JJJ)+BM (KKK, III) *DB (KKK, JJJ)
2000 CONTINUE
DO 2040 III=-1,24
DO 2040 JJJ=1,24
2040 XS(III,JJJ)=KS(III,JJJ)*VOL/8.0
c
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCleeee
C END OF INNER DO LOOP OVER INTEGRATION POINTS C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCceceeeecece
c

C PUT SMALL STIF. MATRIX (KS) INTO BIG STIF. MATRIX (KB)
c
DO 2050 II=1,24
DO 2050 JJU=1,24
2050 SK(I1I,JJ)=KS(II,JJ)
LC(I)-((NBZ+1)*(NBY+1)*(I—l)+(NBZ+1)*(J-1)+(K-1))'3+1
LC(7)=LC(1)+(NBZ+1)*3
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2200

2300
2400

LC(13)=LC (1) +(NBZ+1) * (NBY+1)*3
LC(19)=LC(13) +(NBZ+1)*3

DO 2200 KK=2,6

LC(KK)=LC (KKX-1) +1

LC (KK+6)=LC (KK+5) +1
LC(KK+12) =LC (KX+11)+1
LC(KK+18)=LC(KK+17) +1

DO 2300 II=1,24

II1I=LC(II)

DO 2300 JJ=1,24

JJIJ=LC (JJ)
KB(III,JJJ)=KB(III,JJJ)+SK(II,JJ)
CONTINUE

C

cceecececeeccceceecceceecccececcccccecceeccccececcccccccccecccc
C END OF OUTER DO LOOP ON NO..OF ELEMENTS IN UNIT CELL C
CCCCeeeeeccececcececceeccceeccececcecccccececcecceccceecccccce

c
C CALC. DISP, VECTORS FOR 6 HOMOGENEOUS UNIT STRAIN CASES

c

2420

DO 2420 I=-1,NBX+1

DO 2420 J=1,NBY+l

DO 2420 K=1,NBZ+1

L=((NBZ+1)* (NBY+1) * (I-1)+ (NBZ2+1)*(J-1)+(K-1))*3
UVW(L+1,1)=FDX(I)*XL/100.0
UVW(L+2,2)=FDY(J)*YL/100.0

UVW (L+3,3)=FDZ(K)*ZL/100.0

UVW (L+2,4)=FD2Z(K)*2L/100.0

UVW (L+1,5)=FDZ (K)*2L/100.0
UVW(L+1,6)=FDY(J)*YL/100.0

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

c

BEGIN NORMAL STRAIN ANALYSIS

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

c
2440

2445
2447
2450

2460

C
C USE
C

2500
2510

C USE

GO TO 2460
ISYM=1

DO 2445 I=-1,MMM
DO 2445 J=1,MMM
KN(I,J)=0.0

DO 2447 I=-1 MMM
DO 2447 J=1,NNN
KM(I,J)=0.0

DO 2450 I~-1,NP
DO 2450 J=1,7
FB(I,J)=0.0
CONTINUE

ZERC FORCE CONDITIONS TO ELIMINATE INNER FORCES

IN=Q
IF((NBX.GT.1l) .AND. (NBY.GT.1) .AND. (NBZ.GT.1)) THEN
DO 2510 I=2,NBX

DO 2510 J=2,NBY

DO 2510 K=2,NBZ

L=( (NBZ+1)* (NBY+1) * (I~-1)+(NBZ+1)*(J-1)+(K~-1))*3
DO 2500 M=1,NP

KM(IN+1,M)=KB (L+1,M)

KM(IN+2,M)»KB (L+2,M)

KM (IN+3,M)=KB (L+3,M)

IN=IN+3

END IF

2ERO FORCE B.C.S ON Z-NORMAL FACES

IF((NBX.GT.1) .AND. (NBY.GT.1)) THEN
DO 2530 I=2,NBX
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DO 2530 J=2,NBY
L={ (NBZ+1)* (NBY+1) * (I-1)+(NBZ+1)*(J~1))*3
LL=L+NBZ*3
DO 2525 M=1,NP
KM (IN+1,M)=KB(L+1,6M)
KM(IN+2,M)=KB(L+2,M)
KM(IN+3,M)=KB(LL+1,M)
2525 KM({IN+4,M)=KB(LL+2,M)
2530 IN=IN+4 -

END IF
C
C USE ZERO FORCE B.C.S ON Y-NORMAL FACES
c !

IF((ISYM.EQ.0) .AND. (NBX.GT.1) .AND, (NBZ.GT.1)) TREN
DO 2555 I=2,NBX
DO 2555 K=2,NB2
L=( (NBZ+1)* (NBY+1) *{I-1)+(K=-1))*3
LL=L+ (NBZ+1)* (NBY)*3
DO 2550 M=1,NP
KM(IN+1,M)=KB(L+1,M)
KM(IN+2,M)=KB(L+3,M)
KM(IN+3,M)=KB(LL+1,6 M)

2550 KM(IN+4,M)=KB{(LL+3,6M)

2555 IN=IN+4
END IF
IF((ISYM.EQ.1) .AND. (NBX.GT.1) .AND. (NB2.GT.0)) THEN
DO 2570 I=2,NBX
DO 2570 K=1,NBZ+1
L=( (NBZ+1) * (NBY+1)*(I-1)+(K-1))*3
LL=L+ (NBZ+1)* (NBY)*3
DO 2565 M=1,NP
KM(IN+1,M)=KB (L+2,M})

2565 KM(IN+2,M)=KB(LL+2,M)

2570 IN=IN+2

END IF
C
C USE ZERO FORCE B.C.S ON X-NORMAL FACES
C

IF ((ISYM.EQ.0) .AND, (NBY,GT.1) .AND. (NBZ.GT.1)) THEN
DO 2585 J=2,NBY
DO 2585 K=2,NB2Z
L= ((NBZ+1)*(J-1)+(K-1))*3
LL=L+ ((NBZ+1) * (NBY+1) *NBX)*3
DO 2580 M=1,NP
KM(IN+1,M)=KB(L+2,M)
KM (IN+2,M)=KB (L+3,M)
KM (IN+3,M)=KB (LL+2, M)

2580 KM(IN+4,M)=KB(LL+3,M)

2585 IN=IN+4
END IF
IF ((ISYM.EQ.1) .AND. (NBY.GT.1) .AND,. (NBZ.GT.0)) THEN
DO 2600 J=2,NBY
DO 2600 K=1,NBZ+1
L= ( (NB2+1)* (J=1)+(K-1))*3
LL=L+ ( (NBZ+1) * (NBY+1) *NBX) *3
DO 2595 M=1,NP
KM(IN+1,M)=KB(L+1,M)

2595 KM(IN+2,M)=KB (LL+1,M)

2600 IN=IN+2

END IF
c
C USE ZERO FORCE B.C. ON Z2-PARALLEL EDGES
o

IF((ISYM.EQ.0).AND. (NBZ.GT.1)) THEN
DO 2630 K=2,NBZ
L=(K-1)*3
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LL=L+ (NBZ+1) *NBY*3
LLL=L+ (NBZ+1) * (NBY+1) *NBX*3
LLLL-LL+(NBZ+1)‘(NB¥+1)'NBX'3
DO 2620 M=1,NP
2620 KM(IN+1,M)-KB(L+3,H)+KB(LL+3,H)+KB(LLL+3,H)+KB(LLLL+3,M)
2630 IN=IN+1

END IF
c
C USE ZERO FORCE B.C. ON Y-PARALLEL EDGES
o

IF ( (ISYM.EQ.0) .AND. (NBY.GT.1)) THEN

DO 2680 J=2,NBY

L= (NB2+1) *(J-1) *3

LL=L+NBZ*3

LLL=L+ (NBZ+1) * (NBY+1) *NBX*3

LLLL=LL+(NBZ+1) * (NBY+1)*NBX*3

DO 2670 M=1,NP
2670 KM(IN+1,M)=KB(L+2,M)+KB (LL+2,M)+KB(LLL+2,M) +KB (LLLL+2,M)
2680 IN=IN+1

END IF
c
C USE ZERO FORCE B.C. ON X-PARALLEL EDGES
c

IF((ISYM.EQ.0Q) .AND. (NBX.GT.1)) THEN

DO 2710 I=2,NBX

L= (NBZ+1) * (NBY+1) *(I-1)*3

LL=L+NBZ*3

LLL=L+(NBZ+1) *NBY*3

LLLL=LLL+NB2*3 .

DO 2700 M=1,NP
2700 KM(IN+1,M)=KB(L+1,M)+KB(LL+1,M)+KB(LLL+1,M) +KB (LLLL+1,M)
2710 IN=IN+1

END IF

IJ=IN

IF{1J.LT.1) GO TO 2745
9085 FORMAT(1R ,6F12.0)
DO 2730 I=1,1J
DO 2730 J=1,7
2730 FS(1,J)=0.0
DO 2740 I=-1,6
DO 2735 J=1,1IN
DO 2735 K=1,NP
2735 FS(J,7)=FS(J,7) +KM(J,K) *UVW (K, I}
DO 2740 J=1,1J
FS(J, I)=FS(J,T)
2740 FS(J,7)=0.0
2745 CONTINUE

INN=IN
IN=0
c
C RETAIN INTERNAL DISPLACEMENTS
c

IF((NBX.GT.l) .AND. (NBY.GT.1) ,AND. (NBZ.GT.1)) THEN
DO 2755 I=2,NBX
DO 2755 J=2,NBY
DO 2755 K=2,NB2Z
L-((NBZ+1)'(NBY+1)'(I-1)+(NBZ+1)'(J-1)+(K-1))*3
DO 2750 M=1,INN
KN (M, IN+1)=KM (M, L+1)
KN (M, IN+2)=KM(M, L+2)

2750 KN(M, IN+3)=KM(M,L+3)

2755 IN=IN+3
END IF
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C USE DISPLACEMENT B.C.S ON Z-NORMAL FACES
C
IF ((NBX.GT.1) .AND, (NBY.GT.1)) THEN
DO 2770 I=-2,NBX
DO 2770 J=2,NBY
L-((NBZ+1)'(NBY+1)'(I—1)+(NBZ+1)'(J-l))'3
LL=L+NBZ*3
DO 2765 M=1,INN
KN (M, IN+1)=KM (M, L+1)
KN (M, IN+2)=KM (M, L+2)
KN (M, IN+3)=KM (M, LL+1)
2765 KN(M, IN+4)=KM(M,LL+2)
2770 IN=IN+4
END IF

c
C USE DISPLACEMENT B.C.S ON Y-NORMAL FACES

IF((ISYM.BQ.O).AND.(NBX.GT.I).AND.(NBZ.GT.I)) TREN
DO 2779 I=2,NBX
DO 2779 K=2,NBZ
L= ( (NBZ+1) * (NBY+1) * (I-1)+(K-1))*3
LL=L+ (NB2+1) * (NBY) *3
DO 2777 M=1,INN
KN (M, IN+1)=KM (M, L+1)
KN (M, IN+2) =KM (M, L+3)
KN (M, IN+3) =KM (M, LL+1)
2777 KN (M, IN+4)=KM(M, LL+3)
2779 IN=IN+4
END IF
IF((ISYM.EQ.I).AND.(NBX.GT.I).AND.(NBZ.GT.O)) THEN
DO 2786 I=2,NBX
DO 2786 K=1,NBZ+l
L= ( (NBZ+1) * (NBY+1) * (I-1)+(K-1))*3
LL=L+ (NBZ+1)* (NBY)*3
DO 2784 M=1,INN
KN (M, IN+1)=KM (M, L+2)
2784 KN(M, IN+2)=KM(M,LL+2)
2786 IN=IN+2

END IF
C
C USE DISPLACEMENT B.C.S ON X-NORMAL FACES
c

IF((ISYM.EQ.O).AND.(NBY.GT.I).AND.(NBZ.GT.I)) THEN
DO 2792 J=2,NBY
DO 2792 K=2,NB2
L=( (NBZ+1)*(J-1)+(K-1))*3
LL=L+ ( (NBZ+1) * (NBY+1) *NBX) *3
DO 2790 M=1,INN
KN (M, IN+1)=KM (M, L+2)
KN (M, IN+2)=KM (M, L+3)
KN (M, IN+3)=KM (M, LL+2)

2790 KN(M, IN+4)=KM(M,LL+3)

2792 IN=IN+4
END IF
IF((ISYM.EQ.I).AND.(NBY.GT.I).AND.(NBZ.GT.O)) THEN
DO 2796 J=2,NBY
DO 2796 K=1,NBZ+1
L= ( (NBZ+1) * (J=-1)+(K-1)) *3
LLwL+ ( (NBZ+1) * (NBY+1) *NBX) *3
DO 2795 M=1,INN
KN (M, IN+1) =KM (M, L+1)

2795 KN (M, IN+2)=KM(M,LL+1)

2796 IN=IN+2
END IF

C
C USE DISPLACEMENT B.C. ON Z-PARALLEL EDGES
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2800
2805

C USE

2830
2840

c
C USE

2870
2880

(2]
[y
-3

IF((ISYM.EQ.O).AND.(NBZ.GT.I)) THEN

DO 2805 K=2,NBZ

Le=(K-1)*3

LL=L+(NBZ+1) *NBY*3

LLL-L+(NBZ+1)'(NBY+1)'NBX*3
LLLL=~LL+(NBZ+1)* (NBY+1) *NBX*3

DO 2800 M=1,INN
KN(M,IN+1)-KM(M,L+3)+KM(M,LL+3)+KM(M,LLL+3)+xn(u,LLLL+3)
IN=IN+1

END IF

DISPLACEMENT B.C. ON Y-PARALLEL EDGES

IF ( (ISYM.EQ.0) .AND. (NBY.GT.1)) THEN

DO 2840 J=2,NBY .

L= (NBZ+1) * (J-1) *3

LL=L+NBZ*3

LLLeL+(NBZ+1) * (NBY+1) *NBX*3
LLLL=LL+ (NBZ+1) * (NBY+1) *NBX*3

DO 2830 M=1,INN

KN (M, IN+1) =KM (M, L+2) +KM (M, LL+2) +KM (M, LLL+2) +KM(M, LLLL+2)
IN=IN+1

END IF

DISPLACEMENT B.C. ON X-PARALLEL EDGES

IF((ISYM.EQ.0) .AND. (NBX.GT.1)) THEN

DO 2880 I=2,NBX

L (NBZ+1) * (NBY+1) * (I-1)*3

LL=L+NBZ*3

LLL=L+(NBZ+1) *NBY*3

LLLL=LLL+NBZ*3

DO 2870 M=1, INN

KN (M, IN+1)=KM (M, L+1) +KM (M, LL+1) +KM(M, LLL+1) +KM(M, LLLL+1)
IN=IN+1

END IF

UNCONSTRAINED DISPLACEMENTS FOR UNIT STRAIN CASES
CALL MATINV(KN,MMM,1J,FS,7,7,DET)
A COMPLETE SET OF TOTAL DISPLACEMENTS

IN=0

ON INTERIOR

00N 000 000
(2]
3
-3

2900
2902

2905

IF((NBX.GT.I).AND.(NBY.GT.I).AND.(NBZ.GT.I)) THEN
DO 2905 1=2,NBX

DO 2905 J=2,NBY

DO 2905 K=2,NBZ
L-((NBZ+1)'(NBY+1)'(I-1)+(NBZ+1)*(J-1)+(K-1))*3
IF(ISYM.EQ.1) GO TO 2902

DO 2900 M=1,3

UVW(L+1,M)=UVW (L+1,M) -FS (IN+1,M)

UVW (L+2,M) =UVW (L+2,M) -FS (IN+2, M)
UVW(L+3,M)=UVW(L+3,M) -FS (IN+3,M)

GO TO 2905

CONTINUE

M=6

UVW(L+1,M)=UVAW (L+1,M) -FS (IN+1,M)

UVW (L+2,M) =UVW (L+2, M) -FS (IN+2,M)

UOVW (L+3,M)=UVW (L+3,M) ~-FS (IN+3,M)

IN=IN+3

END IF
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C
C ON Z-NORMAL FACES

c

C

2920
2925

2930

IF ((NBX.GT.1) .AND. (NBY.GT.1)) THEN
DO 2930 I=2,NBX

DO 2930 J=2,NBY

Le=( (NBZ+1) * (NBY+1) * (I-1)+(NB2+1)*(J-1))*3
LL=L+NB2*3

IF(ISYM.EQ.1) GO TO 2925

DO 2920 M=1,3

UVW (L+1,M)=UVW(L+1,M) -FS (IN+1,M)
UVW (L+2,M)=UVH (L+2,M) -FS (IN+2,M)
UVW (LL+1,M) =UVW (LL+1,M) -FS (IN+3,M)
UVW(LL+2,M) =UVW (LL+2, M) -FS (IN+4,M)
GO TO 2930

CONTINUE

M=6

UVW (L+1,M)=UVW (L+1,M) ~FS (IN+1,M)
UVW (L+2,M) =UVW(L+2,M) -FS (IN+2 M)
UVW(LL+1,M) =UVW (LL+1,M) -FS (IN+3,M)
UVW (LL+2,M) =UVW (LL+2,M) -FS (IN+4,M)
IN=IN+4

END IF

C ON Y-NORMAL FACES

C

o

2945
2950

2960

IF((ISYM.EQ.0).AND, (NBX.GT.1) .AND. (NBZ.GT.1)) THEN

DO 2950 I=2,NBX

DO 2950 K=2,NB2

L=( (NBZ+1)* (NBY+1)*(I-1)+(K-1))*3
LL=L+ (NBZ+1)* (NBY) *3

DO 2945 M=1,3

UVW (L+1,M)=UVW (L+1, M) -FS (IN+1,M)
UVW (L+3,M)=UVW (L+3,M) -FS (IN+2,M)
UVW (LL+1, M) =UVW (LL+1,M) -FS (IN+3,M)
UVW(LL+3,M) =UVW (LL+3,M) -FS (IN+4,M)
IN=IN+4

END IF 4
IF((ISYM.EQ.1) .AND, (NBX.GT.1) .AND. (NBZ.GT.0)) THEN
DO 2960 I=2,NBX .
DO 2960 K=1,NBZ+1

L= ( (NBZ+1)* (NBY+1)*(I-1)+(K-1))*3
LL=L+ (NBZ+1) * (NBY) *3

M=6

UVW (L+2,M) =UVW(L+2,M) -FS (IN+1,M)
UVW(LL+2,M) =UVW(LL+2,M) -FS{IN+2,M)
IN=IN+2

END IF

C ON X-NORMAL FACES

c

2975
2980

IF((ISYM.EQ.0) .AND. (NBY.GT.1) .AND. (NBZ.GT.1)) THEN
DO 2980 J=2,NBY

DO 2980 K=2,NBZ

L= ((NBZ+1) *(J-1)+(K-1))*3
LL=L+((NB2+1) * (NBY+1) *NBX) *3

DO 2975 M=1,3

UVW(L+2,M)=UVW (L+2,M) =FS (IN+1,M)
UVW(L+3,M)=UVW (L+3, M) -FS (IN+2,M)
UVW(LL+2,M)=UVW (LL+2,M) -FS (IN+3,M)

UVW (LL+3,M) =UVW (LL+3,M) -FS (IN+4,M)

IN=IN+4

END IF
IF((ISYM.EQ.1) .AND. (NBY.GT.1) .AND. (NBZ.GT.0)) THEN
DO 2996 J=2,NBY )

DO 2996 K=1,NBZ+1
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Le={( (NBZ+1) * (J-1)+(K-1))*3

LL=L+ ( (NBZ+1) * (NBY+1) *NBX) *3

M=6

UVW (L+1,M) =UVW(L+1,M) -FS (IN+1,M)

UVW(LL+1,M)-UVW(LL+1,M)-FS(IN+2,H)
2996 IN=IN+2

END IF

c
C ON Z-PARALLEL EDGES
c
IF ((ISYM.EQ.0) .AND. (NBZ.GT.1)) THEN
DO 3010 K=2,NBZ
L=(K-1)*3
LLeL+ (NBZ+1) *NBY*3
LLLe=L+ (NBZ+1) *(NBY+1) *NBX*3
LLLL=LL+ (NBZ+1) * (NBY+1)*NBX*3
DO 3000 M=-1,3
UVW (L+3, M) =UVW (L+3,M) -FS (IN+1,M)
UVW (LL+3, M) =UVW (LL+3, M) ~FS (IN+1,M)
UVW (LLL+3,M)=UVW(LLL+3,M) -FS (IN+1,M)
3000 UVW(LLLL+3,M)=UVW(LLLL+3,M) -FS (IN+1,M)
3010 IN=IN+1

END IF
c
C ON Y-PARALLEL EDGES
c

IF ((ISYM.EQ.0) .AND. (NBY.GT.1)) THEN

DO 3040 J=2,NBY

L=(NBZ+1) *(J~1)*3

LL=L+NBZ*3

LLL=L+ (NB2+1) * (NBY+1) *NBX*3

LLLL—LL+(NBZ+1)'(NBY+1)'NBX'3

DO 3030 M=1,3

UVW (L+2,M)=UVW (L+2,M) -FS (IN+1,M)

UVW(LL+2,M)-UVW(LL+2,M)-FS(IN+1,M)

UVW(LLL+2,M)'UVW(LLL+2,M)-FS(IN+1,M)
3030 UVW(LLLL+2,M)-UVW(LLLL+2,M)-FS(IN+1.M)
3040 IN=IN+1

END IF

c
C ON X-PARALLEL EDGES
C
IF ((ISYM.EQ.0) .AND. (NBX.GT.1)) THEN
DO 3070 I=2,NBX
L= (NBZ+1) * (NBY+1) *(I-1)*3
LL=L+NBZ*3
LLL=L+ (NB2+1) *NBY*3
LLLL=LLL+NBZ*3
DO 3060 M=1,3
UVW(L+1,M)=UVW(L+1,M) -FS(IN+1,M)
UVW(LL+1,M)=UVW(LL+1,M) -FS (IN+1,M)
UVW(LLL+1,M)=UVW(LLL+1,M)-FS (IN+1,M)
3060 UVW(LLLL+1l,M)=UVW(LLLL+1,6M)-FS(IN+1,M)
3070 IN=IN+1
END IF
IF(ISYM.EQ.0) GO TO 2440
c
CCCCCCCCCCCCCCCCCCCCCCCCCECCCCCCCCCCCCCeeceeccceeeee
C BEGIN ((GAMMA-YZ) = 1.0) SHEAR STRAIN ANALYSIS C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeeceececeeeeeee
C
DO 3145 I=-1,MMM
DO 3145 J=1,MMM
3145 KN(I,J)=0.0
DO 3147 I~-1 MMM
DO 3147 J=1,NNN
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3147

3150
c
C USE
c

3155
3160
3165

C USE

3220
3230
3240

C USE

3250
3255
3260

C USE

3270
3280
3290
3320

ao0on 0O

KM(I,J)=0.0
poO 3150 I=1,NP
DO 3150 J=1,7
FB(I,J)=0.0

ZERO FORCE CONDITIONS TO ELIMINATE INNER FORCES

IN=0

IF((NBX.LB.I).OR.(NBY.LE.I).OR.(NBZ.LE.I)) GO TO 3165
DO 3160 I=2,NBX

DO 3160 J=2,NBY

DO 3160 K=2,NBZ
L-((NBZ+1)*(NBY+1)*(I-1)+(NBZ+1)‘(J-1)+(K—1))'3
DO 3155 M=1,NP

KM(IN+1,M)=KB (L+1,M)

KM (IN+2,M)=KB(L+2,M)

KM (IN+3,M)=KB (L+3,M)

IN=IN+3

CONTINUE

ZERO FORCE B.C.S ON Z-NORMAL FACES

IF( (NBX.LE.O) .OR. (NBY.LE.1)) GO TO 3240
DO 3230 I=1,NBX+l

DO 3230 J=2,NBY
L-((NBZ+1)'(NBY+1)*(I-1)+(NBZ+1)'(J-1))'3
LL=L+NBZ*3

DO 3220 M=1,NP

KM(IN+1,M)=KB (L+3,M)

KM(IN+2,M)=KB (LL+3,M)

IN=IN+2

CONTINUE

ZERO FORCE B.C.S ON Y-NORMAL FACES

IF ((NBX.LE.0Q) .OR. (NBZ.LE.1) }GO TO 3260
DO 3255 I=1,NBX+1l

DO 3255 K=2,NBZ

L= ( (NBZ+1) * (NBY+1) * (I-1)+(K-1))*3
LL=L+ (NBZ+1)* (NBY) *3

DO 3250 M=1,NP

KM (IN+1,M)=KB (L+2,M)
KM(IN+2,M)=KB(LL+2,M)

IN=IN+2

CONTINUE

2ZERO FORCE B.C.S ON X-NORMAL FACES

IF((NBY.LE.I).OR.(NBZ.LE.l)) GO TO 3290
DO 3280 J=2,NBY

DO 3280 K=2,NB2
L-((NBZ+1)'(J-1)+(K-1))'3
LL=L+ ( (NBZ+1) * (NBY+1) *NBX) *3
DO 3270 M=1, NP
KM(IN+1,M)=KB(L+2,6M)
KM(IN+2,M)=KB(L+3,6,M)

KM (IN+3,M)=KB(LL+2,M)

KM (IN+4,M)=KB (LL+3, M)
IN=IN+4

CONTINUE

CONTINUE

IJ=IN

UNCONSTRAINED NODAL FORCES
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3330

3335

3340
3345
c

IF(1J.LT.1) GO TO 3345
DO 3330 I=1,1J

J=7

FS(1,J)=0.0

I=4

DO 3335 J=1,IN

DO 3335 K=1,NP

FS(J, 7) =FS(J,7) +KM(J, K) *UVW (K, I)
DO 3340 J=1,1J
FS(J,I)=FS5(J,7)
FS(J,7)=0.0

CONTINUE

C RETAIN INTERNAL DISPLACEMENTS

c

3380
3390
3400

C
C USE

3420
3430
3440

C USE

3470
3475
3480

C USE

INN=IN

IN=0

IF(IJ.LT.1) GO TO 3595

IF( (NBX.LE.1l) .OR. (NBY.LE.1) .OR. (NBZ.LE.1)) GO TO 3400
DO 3390 I=2,NBX

DO 3390 J=2,NBY

DO 3390 K=2,NBZ

Le=( (NBZ+1)* (NBY+1) *(I-1)+(NBZ+1)*(J-1)+(K-1))*3
DO 3380 M=1,INN

KN (M, IN+1)=KM(M, L+1)

KN (M, IN+2)=KM (M, L+2)

KN (M, IN+3) =KM (M, L+3)

IN=IN+3

CONTINUE

DISPLACEMENT B.C.S ON Z-NORMAL FACES

IF( (NBX.LE.0) .OR. (NBY.LE.1)) GO TO 3440
DO 3430 I=1,NBX+1

DO 3430 J=2,NBY

L=( (NBZ+1)* (NBY+1)* (I-1)+(NBZ+1)*(J=1))*3
LL=L+NB2*3

DO 3420 M=1,INN

KN (M, IN+1)=KM (M, L+3)

KN (M, IN+2)=KM(M,LL+3)

IN=IN+2

CONTINUE

DISPLACEMENT B.C.S ON Y-NORMAL FACES

IF ( (NBX.LE.O) .OR. (NBZ.LE.1)) GO TO 3480
DO 3475 I=1,NBX+l

DO 3475 K=2,NBZ

L=( (NBZ+1) * (NBY+1) * (I-1)+(K-1))*3

LL=L+ (NBZ+1) * (NBY) *3

DO 3470 M=1,INN

KN (M, IN+1)=KM (M, L+2)

KN (M, IN+2) =KM (M, LL+2)

IN=IN+2

CONTINUE

DISPLACEMENT B.C.S ON X-NORMAL FACES

IF((NBY.LE.1) .OR, (NBZ.LE.1)) GO TO 3494
DO 3492 J=2,NBY

DO 3492 K=2,NBZ

L=( (NBZ+1) * (J=1)+(K-1))*3

LL=L+ ( (NBZ+1) * (NBY+1) *NBX) *3

DO 3490 M=1,INN

KN (M, IN+1)=KM (M, L+2)

KN (M, IN+2)=KM (M, L+3)
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KN (M, IN+3) =KM (M, LL+2)
3490 KN (M, IN+4)=KM(M,LL+3)
3492 IN=IN+4
3494 CONTINUE

c
3595 CONTINUE
c
C GET UNCONSTRAINED DISPLACEMENTS FOR UNIT STRAIN CASES
c
IJ=IN
CALL MATINV (KN,MMM, 1J,FS,7,7,DET)

c
C GET A COMPLETE SET OF TOTAL DISPLACEMENTS

C
C ON INTERIOR
C
IN=0
IF((NBX.LB.I).OR.(NBY.LE.I).OR.(NBZ.LE.I)) GO TO 3610
DO 3605 I=2,NBX
DO 3605 J=2,NBY
DO 3605 K=2,NB2
L-((NBZ+1)*(NBY+1)*(I—1)+(NBZ+1)*(J-1)+(K-1))*3
M=4
UVW (L+1,M)=UVW (L+1,M) -FS (IN+1,M)
UVW (L+2,M) =UVW (L+2,M) -FS (IN+2,M)
UVW (L+3,M) =UVW(L+3,M) -FS (IN+3, M)
3605 IN=IN+3
3610 CONTINUE

c
C ON Z-NORMAL FACES
c
IF ( (NBX.LE.O) .OR. (NBY.LE.1)) GO TO 3640
DO 3630 1I=1,NBX+1
DO 3630 J=2,NBY
L-((NBZ+1)*(NBY+1)*(I—l)+(NBZ+1)*(J-1))'3
LL=L+NBZ*3
M=4
UVW (L+3,M) =UVW(L+3,M) -FS (IN+1,M)
UVW (LL+3, M) =UVW (LL+3, M) -FS (IN+2, M)
3630 IN=IN+2
3640 CONTINUE

C
C ON Y-NORMAL FACES
c
IF ( (NBX.LE.Q) .OR. (NBZ.LE.1)) GO TO 3690
DO 3680 I=1,NBX+l
DO 3680 K=2,NBZ
Le=( (NBZ+1)* (NBY+1) * (I-1)+(K-1))*3
LL=L+ (NBZ+1)* (NBY) *3
M=4
UVW (L+2,M) =UVW (L+2,M) -FS (IN+1,M)
UVW (LL+2, M) =UVW (LL+2, M) -FS (IN+2,M)
3680 IN=IN+2
3690 CONTINUE

c

C ON X-NORMAL FACES

c
IF ((NBY.LE.1) .OR. (NBZ.LE.1)) GO TO 3790
DO 3780 J=2,NBY
DO 3780 K=2,NBZ
L={ (NBZ+1) * (J-1)+(K-1))*3
LL=L+ ((NBZ+1) * (NBY+1) *NBX) *3
M=4
UVW (L+2,M) =UVW(L+2,M) -FS (IN+1,M)
UVW(L+3,M) =UVW (L+3,M) ~-FS (IN+2,M)
UVW (LL+2,M) =UVW (LL+2,M) -FS (IN+3,M)
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3775 UVW(LL+3,M)=UVW(LL+3,M)-FS (IN+4,M)
3780 IN=IN+4
3790 CONTINUE

C
CCCCCCCCCCCCCCeeeceeeeeeecececcceccececeeceeccecccccceccee
C BEGIN ((GAMMA-XZ) = 1.0) SHEAR STRAIN ANALYSIS C
CCCCCCCCCCCececececeecececccececceceececcceeccecceccececcee
C
DO 3845 I=-1,MMM
DO 3845 J=1,MMM
3845 KN(I,J)=0.0
DO 3847 I=1,MMM
DO 3847 J=1,NNN
3847 KM(I,J)=0.0
DO 3850 I=1,NP
DO 3850 J=1,7
3850 FB(I,J)=0.0

C USE ZERO FORCE CONDITIONS TO ELIMINATE INNER FORCES

IN=0
IF( (NBX.LE.1) .OR. (NBY.LE.1) .OR. (NBZ,LE.1)) GO TO 3865
DO 3860 I=2,NBX
DO 3860 J=2,NBY
DO 3860 K=2,NBZ
L= ( (NBZ+1) * (NBY+1) * (I-1)+ (NBZ+1)*(J-1)+(K-1))*3
DO 3855 M=1,NP
KM({IN+1,M)=KB(L+1,M)
KM (IN+2,M)=KB(L+2,M)
3855 KM(IN+3,M)=KB(L+3,M)
3860 IN=IN+3
3865 CONTINUE

C USE ZERO FORCE B.C.S ON Z-NORMAL FACES

IF ((NBX.LE.1) .OR. (NBY.LE.O0)) GO TO 3940
DO 3930 I=2,NBX
DO 3930 J=1,NBY+1
L= ( (NB2+1) * (NBY+1) * (I-1)+ (NBZ+1)*(J-1))*3
LL=L+NBZ*3
DO 3920 M=1,NP
KM{IN+1,M)=KB(L+3,6M)
3920 KM(IN+2,M)=KB(LL+3,M)
3930 IN=IN+2
3940 CONTINUE

C USE ZERO FORCE B.C.S ON Y-NORMAL FACES

IF((NBX.LE.1) .OR. (NBZ.LE.1)} GO TO 4050
DO 3980 I=2,NBX
DO 3980 K=2,NBZ
L= ((NBZ+1)* (NBY+1)*(I-1}+(K-1))*3
LL=L+ {(NB2+1) * (NBY) *3
DO 3970 M=1,NP
KM(IN+1,M)=KB(L+1,6M)
KM(IN+2,M)=KB (L+3,M)
KM{IN+3,M)=KB (LL+1,M)

3970 KM(IN+4,M)=KB(LL+3,M)

3980 IN=IN+4

4050 CONTINUE

C USE ZERO FORCE B.C.S ON X-NORMAL FACES
IF ( (NBY.LE.O) .OR, (NBZ,LE.1)) GO TO 4150

DO 4080 J=1,NBY+1
DO 4080 K=2,NBZ
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Le ( (NB2Z+1) * (J=-1)+(K~-1))*3
LL-L+((NBZ+1)'(NBY+1)'NBX)*3
DO 4070 M=1,NP
KM(IN+1,M)=KB(L+1,6M)

4070 KM(IN+2,M)=KB(LL+1,M)

4080 IN=IN+2

4150 CONTINUE

4320 CONTINUE

IJ=IN

UNCONSTRAINED NODAL FORCES

(e Xe N e NN ¢ ]
[2]
(1]
L ]

IF(IJ.LT.1) GO TO 4345
DO 4330 I=1,1IJ
J=7
4330 FS(I,J)=0.0
I=5
DO 4335 J=1,1IN
DO 4335 K=1,NP
4335 FS(J,7)=FS(J,7) +KM(J,K) *UVW (K, I)
DO 4340 J=1,1J
FS(J, I)-FS(JI-’)
4340 FS(J,7)=0.0
4345 CONTINUE

c
C RETAIN INTERNAL DISPLACEMENTS
c

INN=IN

IN=0

IF(IJ.LT.1) GO TO 4595
IF ( (NBX.LE.1) .OR. (NBY.LE.1) .OR. (NBZ.LE.1)) GO TO 4400
DO 4390 I=2,NBX
DO 4390 J=2,NBY
DO 4390 K=2,NB2
L= ( (NBZ+1) * (NBY+1) * (I-1)+ (NBZ+1)*(J-1)+(K-1))*3
DO 4380 M=1, INN
KN (M, IN+1)=KM(M,L+1)
KN (M, IN+2)=KM (M, L+2)
4380 KN(M, IN+3)=KM(M,6L+3)
4390 IN=IN+3
4400 CONTINUE

C
C USE DISPLACEMENT B.C.S ON Z-NORMAL FACES
C

IF ((NBX.LE.1) .OR. (NBY.LE.0)) GO TO 4440
DO 4430 I=2,NBX
DO 4430 J=1,NBY+l
L=( (NBZ+1) * (NBY+1) * (I-1)+(NBZ+1)*(J-1))*3
LL~L+NBZ*3
DO 4420 M=1,INN
KN (M, IN+1) =KM (M, L+3)
4420 KN(M, IN+2)=KM(M,LL+3)
4430 IN=IN+2
4440 CONTINUE

C USE DISPLACEMENT B.C.S ON Y-NORMAL FACES

IF((NBX.LE.1) .OR. (NBZ.LE.1)) GO TO 4480
DO 4475 I=2,NBX

DO 4475 K=2,NB2Z

L=( (NBZ+1)* (NBY+1)* (I-1)+(K-1))*3

LL=L+ (NB2+1) * (NBY) *3

DO 4470 M=1, INN

KN (M, IN+1)=KM (M, L+1)

KN (M, IN+2) =KM (M, L+3)
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KN (M, IN+3)=KM (M, LL+1)
4470 XN (M, IN+4)=KM(M, LL+3)
4475 IN=IN+4
4480 CONTINUE

C USE DISPLACEMENT B.C.S ON X-NORMAL FACES

IF((NBY.LE.O) .OR. (NBZ.LE.1)) GO TO 4494
DO 4492 J=1,NBY+l
DO 4492 K=2,NBZ
Le( (NBZ+1)* (J-1)+{K~1))*3
LL=L+ ( (NB2+1) * (NBY+1) *NBX) *3
DO 4490 M=1,INN
KN (M, IN+1)=KM(M,L+1)
4492 IN=IN+2
4494 CONTINUE

C
4595 CONTINUE
C GET UNCONSTRAINED DISPLACEMENTS FOR UNIT STRAIN CASES

IJ=IN
CALL MATINV(KN,MMM,1J,FS,?7,7,DET)
C
C GET A COMPLETE SET OF TOTAL DISPLACEMENTS
C
C ON INTERIOR
Cc
IN=0
IF((NBX.LE.l) .OR. (NBY.LE.1) .OR. (NBZ.LE.1)) GO TO 4610
DO 4605 I=2,NBX
DO 4605 J=2,NBY
DO 4605 K=2,NB2Z
L-((NBZ+1)'(NBY+1)'(I-l)+(NBZ+1)*(J-1)+(K-1))'3
M=5
UVW (L+1,M)=UVW (L+1,M) -FS (IN+1,M)
UVW (L+2,M)=UVW (L+2,M) -FS (IN+2,M)
UVW(L+3,M)=UVW(L+3,M) =FS (IN+3,M)
4605 IN=IN+3
4610 CONTINUE

c

C ON Z~NORMAL FACES

C
IF ((NBX.LE.1) .OR. (NBY.LE.0)) GO TO 4640
DO 4630 I=2,NBX
DO 4630 J=1,NBY+1
L=( (NBZ+1) * (NBY+1) * (I-1)+ (NB2+1)* (J~1))*3
LL=L+NBZ*3
M=5
UVW (L+3,M)=UVW(L+3,M) -FS (IN+1,M)
UVW (LL+3, M) =UVW (LL+3, M) -FS (IN+2,M)

4630 IN=IN+2
4640 CONTINUE

C

C ON Y-NORMAL FACES

c
IF ((NBX.LE.1) .OR, (NBZ.LE.1)) GO TO 4690
DO 4680 I=2,NBX
DO 4680 K=2,NBZ
L=( (NBZ+1) * (NBY+1) *(I-1)+(K-1})*3
LL=L+ (NB2+1) * (NBY) *3
M=5
UVW (L+1,M)=UVW(L+1, M) -FS (IN+1,M)
UVW (L+3,M) =UVW (L+3,M) -FS (IN+2, M)
UVW (LL+1, M) =UVW (LL+1,M) -FS (IN+3,M)
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UVW (LL+3,M) =UVW (LL+3,M) ~FS(IN+4,M)
4680 IN=IN+4
4690 CONTINUE

C
C ON X-NORMAL FACES
C

IF((NBY.LE.O) .OR. (NBZ.LE.1)) GO TO 4790
DO 4780 J=1,NBY+1l
DO 4780 X=2,NB2Z
Le( (NBZ+1) * (J-1)+(K-1)) *3
LL=L+ ((NB2+1) * (NBY+1) *NBX) *3
M=5
UVW(L+1,M)=UVW(L+1,M)-FS(IN+1,M)
UVW (LL+1,M) =UVW (LL+1,M) -FS (IN+2,M)
4780 IN=IN+2
4790 CONTINUE
c
CCCcceceeeeceeeeeeccceecceecceccecceecceeccecce
C COMPUTE NODAL FORCES AND ELASTIC CONSTANTS C
CCCCCCCCCCCCCeCeeeccceeceececceecccceeceeeceeece
(of
IF(NP.LT.1) GO TO 4950
DO 4900 I=1,NP
DO 4900 J=1,6
FB(I,J)=0.0
DO 4500 K=1,NP
4900 FB(I,J)=FB(I,J)+KB(I,K)*UVW(K,J)
4950 CONTINUE
Cc
¢ COMPUTE SIDE LOADS FOR EACH UNIT STRAIN CASE
c
XNA=YL*ZL
YNA=XL*ZL
ZNA=XL*YL
DO 5400 M=1,6
DO 5250 J=1,NBY+l
DO 5250 Ke=1,NBZ+l
Le ((NBZ+1)* (J-1)+(K-1))*3
FT(1,M)=FT(1,M)-FB(L+1,M)
FT(6,M)=FT(6,M)-FB(L+2,M)
5250 FT(S,M)=FT(5,M)-FB(L+3,M)
FT(5,M)=FT(5,M)/XNA
FT(6,M)=FT({6,M) /XNA
DO 5300 I=1,NBX+l
DO 5300 K=1,NBZ+1
L=((NBZ+1)* (NBY+1) * (I-1)+(K-1))*3
FT(2,M)=FT(2,M) -FB(L+2,M)
5300 FT(4,M)=FT(4,M)-FB(L+3,M)
FT(2,M)=FT(2,M)/YNA
FT(4,M)=FT (4,M)/YNA
DO 5350 I=1,NBX+1l
DO 5350 J=1,NBY+1
L= ( (NBZ+1)* (NBY+1)* (I-1)+(NBZ+1)*(J-1))*3
5350 FT(3,M)=FT(3,M)~-FB(L+3,M)
FT(3,M)=FT(3,M)/2NA
5400 CONTINUE
DO 5420 I1=-1,6
DO 5420 J=1,6
5420 FTT(I,J)=FT(I,J)
o
C CALCULATE THE ELASTIC CONSTANTS OF THE UNIT CELL
o
CALL INV(FTT)
DO 5450 I=1,6
DO 5450 J=1,6
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5450 FT(I,J)=FTT(I,J)
EX=1.0/FT(1,1)
EY=1.0/FT(2,2) -
EZ=1.0/FT(3,3)
GXY=1.0/FT(6,6)
GYZ=1.0/FT(4,4)
GX2=1.0/FT(5,5)
PRXY=-FT(2,1)/FT(1,1)
PRYX=-FT(1,2)/FT(2,2)
PRXZ=-FT(3,1) /FT(1,1)
PRYZ=-FT(3,2)/FT(2,2)
PRZY=-FT(2,3) /FT(3,3)
MIXXY=FT(4,1)/FT(1,1)
MIXXZ=FT(6,1)/FT(1,1)
MIXYZ=FT(5,1)/FT(1,1)
MIYXY=FT(4,2)/FT(2,2)
MIYXZ=FT(6,2)/FT(2,2)
MIYYZ=FT(5,2)/FT(2,2)
MIZXY=FT (4,3)/FT(3,3)
MIZX2Z=FT(6,3)/FT(3,3)
MIZYZ=FT(5,3)/FT(3,3)
CXYXZ=FT(4,5) /FT(5,5)
CXYYZ=FT(4,6) /FT(6,6)
CX2YZ=FT(5,6)/FT(6,6)
WRITE (6,9560)

WRITE (6,9560)
WRITE(6,9600)
WRITE (6,9560)
WRITE (6,9500) EX,EY,E2

OO0 O00000

WRITE (6,9510)
WRITE(6,9520)
WRITE (6,9525)

GYZ,GXZ,GXY
PRYZ, PRXZ,PRXY
PRZY,PRZX, PRYX

WRITE (6,9530) MIXYZ,MIYYZ MIZYZ
WRITE (6,9540) MIXXZ,MIYXZ, MIZXZ
WRITE(6,9550) MIXXY,MIYXY,6 MI2XY
WRITE (6,9560)
WRITE (6,9560)

(e XeXe]

READ THE APPLIED STRESSES

a0no0

WRITE (6,9610)
WRITE (6, 9560)
WRITE (6, 9560)
WRITE (6,9620)
READ(5,9010) SX
WRITE (6,9895) SX
WRITE(6,9630)
READ(S, 9010) SY
WRITE (6,9895) SY
WRITE (6, 9640)
READ(S,9010) SZ
WRITE (6,9895) SZ
WRITE (6, 9650)
READ(5,9010) SYZ
WRITE (6,9895) SYZ
WRITE (6, 9660)
READ(S5,9010) SX2
WRITE (6,9895) SX2Z
WRITE (6, 9670)
READ (S5, 9010) SXY
WRITE (6, 9895) SXY
WRITE (6, 9560)
WRITE (6, 9560)

c
C CALCULATE THE AVERAGE STRAINS
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STN(1)=SX*FT(1,1) +SY*FT(1,2)+SZ*FT(1,3) +SY2*FT(1,4)
STN(1)=STN(1)+SXZ*FT(1,5) +SXY*FT (1, 6)
STN (2)=SX*FT(2,1) +SY*FT(2,2)+S2*FT (2, 3) +SYZ*FT(2,4)
STN(2)=STN(2) +SXZ*FT(2,5) +SXY*FT (2, 6)
STN(3)=SX*FT(3,1) +SY*FT(3,2)+S2*FT(3,3) +SYZ*FT(3,4)
STN(3)=STN(3) +SXZ*FT(3,5) +SXY*FT(3, 6)
STN (4)=SX*FT(4,1)+SY*FT (4,2)+S2Z*FT(4,3) +SYZ*FT(4,4)
STN (4)=STN(4) +SXZ*FT (4, 5) +SXY*FT (4, 6)
STN (5) =SX*FT(S, 1) +SY*FT(5,2) +SZ*FT(5,3) +SYZ*FT(5, 4)
STN (5)=STN(5) +SXZ*FT (5, 5) +SXY*FT(5,6)
STN (6)=SX*FT(6,1) +SY*FT(6,2) +SZ*FT(6,3) +SYZ*FT(6,4)
STN(6)=STN(6) +SXZ*FT(6,5) +SXY*FT(6,6)

C GET NODAL DISPLACEMENTS CORRESPONDING TO THE AVG. STRAINS

DO 5500 I=1,NP

VU(I)=STN (1) *UVW(I, 1) +STN(2) *UVW(I,2) +STN(3) *UVW(I, 3)

VU(I)=VU(I)+STN(4)*UVW(I,4)+STN(5)*UVW (I, 5)+STN(6) *UVW(I,6)
5500 CONTINUE

c
CCCCCeececeeeeececececcceccececcecccececccceccccce
C BEGIN DO LOOP FOR STRESSES IN EACH ELEMENT C
CCCCCCeeeceeeeeeececcecececcececceccceccecccecccece
C
C ESTABLISH ELEMENT DIMENSIONS
o

DO 8000 I=1,NBX

DO 8000 J=1,NBY

DO 8000 K=1,NBZ

A=FDX (I+1)-FDX(I)

A=A*XL/100.

AA=0.5*A

B=FDY (J+1) -FDY (J)

B=B*YL/100.

BB=0.5*B

C=FDZ (K+1)-FDZ (K)

C=C*2L/100.

CC=0.5*C

DO 5600 III=1,6

DO 5600 JJJ=1,24

5600 BM(I1I,JJJ)=0.0

X=0.0

Y=0.0

2=0.0

C

C GET STRAIN / DISPLACEMENT MATRIX
CALL GETB(AA,BB,CC,X,Y,2,BM)

C GET CORNER DISPLACEMENTS

L-((NBY+1)'(NBZ+1)*(I-1)+(NBZ+1)*(J-1)+(K-1))*3
LL=L+ (NB2+1) *3
LLL=L+ (NBZ+1) *(NBY+1) *3
LLLL=LLL+ (NBZ+1)*3
DO 5700 M=1,6
UVWS (M) =VU (L+M)
UVWS (M+6) =VU (LL+M)
UVWS (M+12) =VU (LLL+M)
5700 UVWS (M+18)=VU(LLLL+M)

C GET AVERAGE ELEMENT STRAINS
C

DO 5800 M=1,6
TS(M)=0.0
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DO SB00 N=1,24
5800 TS (M) =TS (M) +BM (M, N) *UVWS (N)

DUM=TS (4)
TS (4)=TS(5)
TS({5) =TS (6)
TS (6) ~DUM
o
C RECALL NUMBER OF JUNCTIONS IN ELEMENT
c
JTC=NJC(I,J,K)
C

C RECALL MATL. NO. AND FIBER DIRECTION ANGLES (ONLY BRANCH)
C

IF{(JTC.LT.1) THEN

MN=MN1 (I, J, K)

Al=ANG1A(I,J,K)

A2=ANG1B (I, J,K)

C GET AVERAGE STRAINS IN MATERIAL COORDINATES

CALL TRANS2(Al,A2,T)
DO 5900 M=l1,6
SIG(M)=0.0
DO 5900 N=1,6
SS(M,N)=0.0
5900 SIG(M)=SIG(M)+T(M,N)*TS(N)
WRITE(6,9031) I,J,K
WRITE (6,9020) (SIG(M),M=1,6)

GET STRESSES IN THE MATERIAL

00000

CALL GETSS (MM,MN, PROP,SS)
CALL GETMS (MM, MN,PROP, SIG, SAFE)
DO 6010 M=1,6
TS1(M)=0.0
DO 6010 N=1,6
6010 TS1 (M)=TS1(M)+SS(M,N)*SIG(N)
WRITE (6,9560)
WRITE(6,9690) I,J,K
WRITE(6,9692) MN
WRITE (6,9694) TS1(1),TS1(2),TS1(3)
WRITE (6,9696) TS1(4),TS1(5),TS1(6)
WRITE (6,9698) SAFE
WRITE (6,9560)
END IF

c
C RECALL INTERFACIAL NORMAL DIRECTION ANGLES (FIRST BRANCH)
C

IF(JTC.EQ.1) THEN

Al=AGN1A(I,J,K)

A2=AGN1B(I,J,K)

C GET AVG. STRAINS IN INTERFACIAL COORDINATES

CALL TRANS2(Al,A2,T)
DO 6050 II=1,6
DUM=0.0
DO 6040 JJ=1,6
6040 DUM=DUM+T(II,JJ)*TS(JJ)
6050 TSS(II)=DUM

Cc
C RECALL MATL.NO. AND FIBER DIRECTION ANGLES (FIRST BRANCH)
c

MN=MN1 (I, J, K)

Al=ANG1lA (I, J,K)

A2=ANG1B(I,J, K)
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C GET

6350
6400

6440
6450
c

STRESS/STRAIN MATRIX IN GLOBAL COORDINATES

CALL GETSS (MM,MN, PROP,SS)
CALL TRANS2{Al,A2,T)

DO 6400 II=1,6

DO 6400 JJ=1,6

SUM=0.0

DO 6350 KK=1,6
SUM=SUM+SS (II,KK) *T (KK, JJ)
PR(II,JJ)=SUM

DO 6450 II=1,6

DO 6450 JJ=1,6

SUM=0.0

DO 6440 KK=1,6
SUM=SUM+T (KK, II) *PR (KK, JJ)
SS1(II,JJ)=SUM

C RECALL MATL.NO. AND FIBER DIRECTION ANGLES (SECOND BRANCH)

c

C GET

6490
6500

6540
6550
c

MN=MN2 (I, J,K)
Al=ANG2A(I,J,K)
A2=ANG2B(I,J,K)

STRESS/STRAIN MATRIX IN GLOBAL COORDINATES

CALL GETSS (MM,MN, PROP,SS)
CALL TRANS2(Al,A2,T)

DO 6500 II=1,6

DO 6500 JJ=1,6

SUM=0.0

DO 6490 KK=1,6

SUM=SUM+SS (II,KK)*T (KK, JJ)
PR(II,JJ)=SUM

DO 6550 II=1,6

DO 6550 JJ=1,6

SuM=0.0

DO 6540 KK=1,6
SUM=SUM+T (KK, II) *PR (KK, JJ)
§S2(1I,JJ)=SUM

C RECALL FIRST BRANCH VOL.FRACT. AND INTERFACIAL NORMAL ANGLES

c

C GET

6590
6600

V1=FV1(I,J,K)
V2=1.0-v1
Al=AGN1lA(I,J, K)
A2=AGN1B(I, J,K)

S.S. MATRICES IN INTERFACIAL COORDINATES

CALL TRANS1(Al,A2,T)

DO 6600 II=1,6

DO 6600 JJ=1,6

SUM=0.0

TUM=0.0

DO 6590 KK=1,6

SUM=SUM+SS1 (II,KK)*T (KK, JJ)
TUM=TUM+SS2 (1I,KK)*T (KK, JJ)
RP(II, JJ)=SUM
PR(II,JJ)=TUM

DO 6650 II=1,6

DO 6650 JJ=1,6

SUM=0.0

TUM=0.0

DO 6640 KK=1,6
SUM=SUM+T (KK, II) *RP (KK, JJ)
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6640 TUM=TUM+T (KK, II) *PR (KK, JJ)
S§SS1(II,JJ)=SUM
6650 S5S2(II,JJ)=TUM

c
C DO REPLACEMENT MATERIAL ANALYSIS AT FIRST JUNCTION

c
CALL GETDD(SSSl,SSSZ,VI,VZ,DDI,DD2)

c
C GET CONSTITUENT STRAINS IN INTERFACIAL COORDINATES
o
po 6711 II=1,6
781 (I1)=0.0
752(I1)=0.0
DO 6711 JJ=1,6
TSl(II)-TSI(II)+DDI(II,JJ)‘TSS(JJ)
6711 TSZ(II)-TSZ(II)+DD2(II,JJ)'TSS(JJ)

C GET CONSTITUENT STRAINS IN GLOBAL COORDINATES

DO 6720 II=1,6
DUM=0.0
TUM=0.0
DO 6715 JJ=1,6
DUM=DUM+T (11, JJ) *TS1(JJ)
6715 TUM=TUM+T(II,JJ)*TS2(JJ)
TS(IX)=DUM
6720 TSS(II)=TUM

C GET CONSTITUENT STRAINS IN MATERIAL COORDINATES

Al=ANG1lA (I, J,K)
A2=ANG1B(I,J,K)
CALL TRANS2(Al,A2,T)
po 6730 I1I=1,6
DUM=0.0
DO 6725 JJ=1,6
6725 DUM=DUM+T(II,JJ)*TS (JJ)
6730 TS1(II)=DUM
Al=ANG2A(I,J,K)
A2=ANG2B (I, J,K)
CALL TRANS2(Al,A2,T)
DO 6740 II=1,6
DUM=0.0
Do 6735 JJ=1,6
6735 DUM=DUM+T (1I,JJ)*TSS(JJ)
6740 TS2(II)=DUM

C GET CONSTITUENT STRESSES IN MATERIAL COORDINATES

MN=MN1 (I, J, K)
CALL GETSS (MM,MN,PROP,SS)
CALL GETMS (MM, MN, PROP,TS1,SAFE)
Do 6750 I1I=1,6
ST1(II)=0.0
DO 6750 JJ=1,6
6750 ST1(II)=ST1(IX)+SS(II,JJ)*TS1(JJ)
WRITE (6,9560)
WRITE (6,9690) I,J,K
WRITE (6,9692) MN
WRITE (6, 9694) ST1(1),ST1(2),ST1(3)
WRITE(6,9696) ST1(4),ST1(5),ST1(6)
WRITE (6,9698) SAFE
WRITE (6,9560)
MN=MN2 (I, J,K)
CALL GETSS (MM, MN, PROP,SS)
CALL GETMS (MM, MN,PROP,TS2, SAFE)
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DO 6760 II=1,6
ST2(11)=0.0
DO 6760 JJ=1,6
6760 ST2(IT)=ST2(II)+SS(II,JJ)*TS2(JIJ)
WRITE (6,9560)
WRITE(6,9690) I,J,K
WRITE (6,9692) MN
WRITE (6,9694) ST2(1),ST2(2),ST2(3)
WRITE (6, 9696) ST2(4),ST2(S),ST2(6)
WRITE(6,9698) SAFE
WRITE (6, 9560)
END IF

IF(JTC.EQ.2) THEN
RECALL MATL.NO. AND FIBER DIRECTIQN ANGLES (FIRST BRANCH)

ann 0

MN=MN1 (I, J,K)
Al=ANGlA (I, J,K)
A2=ANG1B (I, J,K)

C GET STRESS/STRAIN MATRIX IN GLOBAL COORDINATES

CALL GETSS (MM, MN, PROP, SS)

CALL TRANS2 (Al,AZ2,T)

DO 7040 II=1,6

DO 7040 JJ=1,6

SUM=0.0

DO 7035 KK=1,6
7035 SUM=SUM+SS(II,KK)*T (KK, JJ)
7040 PR(II,JJ)=SUM

DO 7045 II=1,6

DO 7045 JJ=1,6

SUM=0.0

DO 7044 KK=1,6
7044 SUM=SUM+T (KK, II) *PR (KK, JJ)
7045 SS1(I1I,JJ)=SUM

c
C RECALL MATL.NO. AND FIBER DIRECTION ANGLES (SECOND BRANCH)
c

MN=MN2 (I, J, K)

Al=ANG2A(I,J,K)

A2=ANG2B(I,J,K)

c
C GET STRESS/STRAIN MATRIX IN GLOBAL COORDINATES

CALL GETSS (MM,MN, PROP,SS)
CALL TRANS2(Al,A2,T)
DO 7050 I1=1,6
DO 7050 JJ=1,6
SUM=0.0
DO 7049 KK=1,6
7049 SUM=SUM+SS(II,KK) *T (KK, JJ)
7050 PR(II,JJ)=SUM
DO 7055 II=1,6
DO 7055 JJ=1,6
SUM=0.0
DO 7054 KK=1,6
7054 SUM=SUM+T (KK, II) *PR (KK, JJ)
7055 SS2(I1,JJ)=SUM
C
C RECALL FIRST BRANCH VOL.FRACT. AND INTERFACIAL NORMAL ANGLES
(o
Vi=FV1l(I1,J,K)
V2=1.0-V1
Al=AGN1A(I,J,K)
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C GET

7053

7060

7064

7065
c

A2=AGN1B(I,J,K)

S.S. MATRICES IN INTERFACIAL, COORDINATES

CALL TRANS1 (Al ,A2,TY)

DO 7060 II=1,6

DO 7060 JJ=1,6

SUM=0.0

TUM=0.0

DO 7059 KK=1,6
SUM=SUM+SS1 (II,KK) *T (KX, JJ)
TUM=TUM+SS2 (II,KK) *T(:x, JJ)
RP(I1,JJ)=SUM
PR{I1I,JJ)=TUM

DO 7065 II=1,6

DO 7065 JJ=1,6

SUM=(0 .0

TUM=0.0

DO 7064 KK=1,6
SUM=SUM+T (KK, II) *RP (KK, JJ}
TUM=TUM+T (KK, II) *PR (KK, JJ}
§SS1(II,JJ)=SUM
$852(1I1,JJ)=TUM

C DO REPLACEMENT MATERIAL ANALYSIS AT FIRST JUNCTION

~

¢

7074
7075

C GET

7078
7079

7084
7085

CALL GETDD({$SS1,8s5s82,Vv:,v2,001,DD2)

DO 7075 II=1,6

DO 7075 JJ=1,6

DUM=0.0

DO 7074 KK=1,6
DUM=DUM+V1*SSS1 (11, KK)*DD1 (KK,JJ)+V2*SSS2(II, KK)*DD2 (KK, JJ)
DD(II,JJ)=DUM

REPLACEMENT S.S. MATRIX IN GLOBAL COORDINATES

CALL TRANS2 (Al,A2,T)

DO 7079 II=1,6

DO 7079 JJ=1,6

SUM=0.0

DO 7078 KK=1,6
SUM=SUM+DD(II,KK) *T (KK, JJ)
PR(II,JJ)=SUM

DO 7085 II=1,6

DO 7085 JJ=1,6

SUM=0.0

DO 7084 KK=1,6
SUM=SUM+T (KK, II) *PR (KK, JJ)
$S1(11,JJ)=SUM

C
C RECALL MATL.NO. AND FIBER DIRECTION ANGLES (THIRD BRANCH)

C

C GET

7149
7150

MN=MN3 (I, J, K)
Al=ANG3A(I,J,K)
A2=ANG3B(I,J,K)

STRESS/STRAIN MATRIX IN GLOBAL COORDINATES

CALL GETSS (MM,MN, PROP, SS)
CALL TRANS2(Al,A2,T)

DO 7150 II=1,6

DO 7150 JJ=1,6

SUM=0.0

DO 7149 KK=1,6
SUM=SUM+SS (II,KK) *T (KK, JJ}
PR(II,JJ)=SUM
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DG 7155 [1=4,6
pe 7185 JJ~1,6
SUM=0 .0
DG 7.94 KKe=1,6
7154 SUM=sUM+T (KK, I1) *PRIKK, o J;
715% $324i04, JJ)y=5UM
Cc
C RECALL SECOND BRANCH VOL.FRACT. ANDL INTERFACIAL NORMAL ANGLES
c
J2=Fv2(I,J,K)
Jiwl, 0-V1
Al=AGN2A(I,J,K)
AZ=AGN2B (I, J,K)

c
C GET S.5. MATRICES IN INTERFAC.AL COORDINATES
Cc - "

JALL TRANS1(Al,R2,T
DO 7160 II=1,6
20 7160 JJ=1,6
3UM=0.0
TiM=0.0
DO 7159 KK=1,6
51M=SUM+SS1 (II,KK) * 7 KV, JJ)
~icg 7uUM=TUM+5S2 (II,KK)*T (KK, .JJ)
RP({1i,3J)=SUM
7160 PR(Ii,JJ)=TUM
DL 7165 II=1,6
DU 7165 JJ=1,6
SUM=0.0
TUM=0.0
DO 7164 KK=1,6
S5UM=SUM+T (KK, II) *RP (KK, JJ)
7:64 TUM=TUM+T (KK, II)}*PR(KK, JJ;
SSS1(II,JJ)=SUM
716¢ 85§S2(1I1,JJ)=TUM
C
C DO REPLACEMENT MATERIAL ANALYSIS AT SECOND JUNCTION
C
CALL GETDD(SSSI,Sssz,V},V2,DD1,DDZ)
C
C GET AVERAGE STRAINS IN INTERFACIAL COORDINATES
C
A1=AGN2A{I,J,K)
A2=AGN2B(I, J, K)
CALL TRANS2 (Al,A2,T)
DO 7250 II=1,6
DUM=0.0
DO 7240 JJ=1,6
7240 DUM«DUM+T(II,JJ)*TS(JJ)
7250 TSS(II)=DUM

C GET CONSTITUENT STRAINS IN INTERFACIAL COORDIDATES

DO 7311 II=1,6

TS1(II)=0.0

TS2(I1)=0.0

po 7311 JJ=1,6

TS1{I1)=TS1(II)+DD1(1L,JJ)}*TSS(JJ}
7311 TS2(I1I1)=TS2(II1)+DD2(1:,JJ)*TSS(JJ)

C GET CONSTITUENT STRAINS IN GLOBAL COORDINATES
CALL TRANS1 (Al,A2,T)
DO 7320 II-1,6

puM=0.0
TUM=0.0
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DO 7315 JJ=1,6
DUM=DUM+T (11,JJ)*T7. (0o
731.5 TUM=TUM+T(II, JJ}*7 2. ..
TS(I1)=DUM
7320 TSS(II)=TUM
Al=ANG3A(I,J,K)
A2=~ANG3B (I, J,K)
CALL TRANS2 (Rl,A2. 7.
DO 7330 1I=-1,6
DUM=0.0
DO 732% JJ=1,6
33:5 DUM=DUM+T{(II,JJ)*T3S ..
1530 TS2(I1)=DUM

¢ ZET COWSTITUENT STRESSES IN METORIML JULRIINATES
o
MN=MN3 (1, J,K)
CALL GETSS (MM, MN, PROP ., "S5,
CALL GETMS(MM,MN,?ROP,TSZ,SAFE,
po 7350 II=1,6
sT2(11)=0.0
DO 7350 JJ=1,6
7550 ST2(II)=ST2(II)+SS{I1,.Jy*TS21JJ!
WRITE (6,9560)
WRITE (6,9690) I, V. K
WRITE (6,9692) MN
WRITE (6, 9694) STZ(1),ST2:i :,
WRITE (6,9696) STz{4:,0". (5
WRITE(6,9698) SAFZ
WRITE (6,9560)

LR ]
ed ]
CLopr
.~

)

QECALL FIRST BRANCH INTTR 27 1AL NGRMAL ANGLES

ty ™ N

Al=AGN1A(I,J,K)
A2=AGN1B(I,J,K)

o GET AVERAGE STRAINS IN INTEWFAC:AL COORDINATES

CALL TRANS2(Al,A2,T

DO 7370 II=1,6

DUM=0 .0

DO 7360 JJ=1,6
7360 DUM=DUM+T(II,JJ)*TS(J.))
7370 TSS(II)=DUM

C
C RECALL FIRST BRANCH MATL. NUMBER AND FIBER ANGLES
C

MN=MN1 (I, J,K)

Al=ANGlA(I, J,K)

A2=ANG1B (I, J, K}
C
C GET FIRST BRANCH S.S. MATRIX IN GLOBAL COORDINATES
C

CALL GETSS (MM,MN, FRCP,S7;
CALL TRANS2 (Al,AZ,T;
DO 7400 II=1,6
po 7400 JJ=1,6
SuM=0.0
DO 7390 KK=1,6
7390 SUM=SUM+SS(II, KK)*T (KK, JJ)
7400 PR(II,JJ)=SUM
DO 7450 II=1,6
DO 7450 JJ=1,6
SUM=0.0
DO 7440 KK=1,6
7440 SUM=SUM+T (KK, II) *PR(KX, JJ)



.

7450 SS1(1X,JJ)=SUM

c
C RECALL SECOND BRANCH MATL. NUMBER AND FIBER ANGLES
c

MN=MN2(I,J,K)

Al=ANG2A(I,J,K)

A2=ANG2B (I, J,K)

C GET SECOND BRANCH S.S. MATRIX IN GLOBAL COORDINATES

CALL GETSS (MM,MN, PROP, SS)

CALL TRANS2 (Al,A2,T)

DO 7500 II=1,6

DO 7500 JJ=1,6

SUM=0.0

DO 7490 KK=1,6 -
7490 SUM=SUM+SS(1I, KK)'T(KK,JJ)
7500 PR(II,JJ)=SUM

DO 7550 II=1,6

DO 7550 JJ=1,6

SUM=0.0

DO 7540 KK=1,6
7540 SUM=SUM+T (KK, II) *PR (KK, JJ)
7550 SS2(II,JJ)=SUM

o
C RECALL FIRST BRANCH VOL. FRACT. AND INTER. NORMAL ANGLES
c

V1=FV1l(I, J,K)

V2=1.0-V1

Al=AGN1A(I,J,K)

A2=AGN1B(I, J,K)

c .
C GET MATL S.S. MATRICES IN INTERFACIAL COORDINATES

CALL TRANS1(Al,A2,T)
DO 7600 II=1,6
DO 7600 JJ=1,6
SUM=0.0
TUM=0.0
DO 7590 KK=1,6
SUM=SUM+SS1 (II, KK)*T (KK, JJ)
7590 TUM=TUM+SS2 (II,KK)*T(KK,JJ)
RP(II,JJ)=SUM
7600 PR(II,JJ)=TUM
DO 7650 II=1,6
DO 7650 JJ=1,6
SumM=0.0
TUM=0.0
DO 7640 KK=1,6
SUM=SUM+T (KK, II) *RP (KK, JJ)
7640 TUM=TUM+T (KK, II) *PR(KK,JJ)
S$SS1(1I,JJ)=SUM
7650 SSS2(I1I,JJ)=TUM

c
C DO REPLACEMENT MATERIAL ANALYSIS
c
CALL GETDD(SSS1,SSs2,V1,V2,DD1,DD2)

c
C GET CONSTITUENT STRAINS IN INTERFACIAL COORDINATES

DO 7711 II=1,6

TS1(I1I)=0.0

TS2(II)=0.0

DO 7711 JJ=1,6

TSI(II)-TSI(II)+DDl(II JJ) *TSS (JJ)
7711 TS2(II)=TS2(II)+DD2(I1I,JJ)*TSS(JIJ)

-
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c .
C GET CONSTITUENT STRAINS IN GLOBAL COORDINATES

DO 7720 1I=1,6

DUM=0.0

TUM=0.0

DO 7715 JJ=1,6

DUM=DUM+T (1I,JJ) *TS1(JJ)
7715 TUM=TUM+T(II,JJ)*TS2(JJ)

TS(II)=DUM
7720 TSS(I1)=TUM

c
C RECALL FIRST BRANCH FIBER ANGLES
c
Al=ANGlA(I, J,K)
A2=ANG1B (I, J,K)

C
C GET FIRST BRANCH STRAINS IN MATERIAL COORDINATES
c
CALL TRANS2(Al,A2,T)
DO 7730 1I=1,6
DUM=0.0
Do 7725 JJ=1,6
7725 DUM=DUM+T (II,JJ)*TS(JJ)
7730 TS1(II1)=DUM

c
C RECALL SECOND BRANCH FIBER ANGLES
o
Al=ANG2A(I,J,K)
A2=ANG2B(I,J,K)

C GET SECOND BRANCH STRAINS IN MATERIAL COORDINATES

CALL TRANS2 (Al,A2,T)

DO 7740 II=1,6

DUM=0.0

DO 7735 JJ=1,6
7735 DUM=DUM+T (1I,JJ)}*TSS (JJ)
7740 TS2(II)=DUM

C GET FIRST BRANCH STRESSES

MN=MN1 (I, J,K)
CALL GETSS (MM,MN, PROP, SS)
CALL GETMS (MM,MN, PROP,TS1, SAFE)
DO 7750 II=1,6
ST1(II)=0.0
DO 7750 JJ=1,6
7750 ST1(II)=ST1(IX)+8S(II,JJ)*TS1(JJ)
WRITE (6,9560)
WRITE(6,9690) I,J,K
WRITE(6,9692) MN
WRITE (6,9694) ST1(1),5T1(2),5T1(3)
WRITE(6,9696) ST1(4),ST1(5),ST1(6)
WRITE (6,9698) SAFE

WRITE (6,9560)
c
C GET SECOND BRANCH STRESSES
c

MN=MN2(1,J,K)

CALL GETSS (MM, MN, PROP,SS)
CALL GETMS (MM, MN, PROP,TS2, SAFE)
DO 7760 1I=1,6
S$T2(I11)=0.0
DO 7760 JJ=1,6
7760 ST2(II)=ST2(II)+SS(I1I,JJ)*TS2(JJ)
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WRITE (6, 9560)

WRITE(6,9690) I,J,K

WRITE(6,9692) MN

WRITE (6,9694) ST2(1),ST2(2),ST2(3)
WRITE (6,9696) ST2(4),ST2(S5),ST2(6)
WRITE (6,9698) SAFE

WRITE (6,9560)
END IF
8000 CONTINUE
C
9000 FORMAT(F12.5)
9010 FORMAT(F12.2)
9015 FORMAT(E16.6)
9020 FORMAT(6F12.2)
9025 FORMAT (10X, 4E14.4)
9030 FORMAT(IS) - "
€9031 FORMAT (3IS)
9060 FORMAT (1H ,’INPUT NUMBER OF JUNCTIONS AT LOCATION’,3I4)
9080 FORMAT(1H ,’INPUT NO. SUBCELLS (X DIR.) IN UNIT CELL’)
9090 FORMAT(1H ,’INPUT NO. SUBCELLS (Y DIR.) IN UNIT CELL')
9095 FORMAT (1H ,’INPUT NO. SUBCELLS (2 DIR.) IN UNIT CELL’)
9100 FORMAT(1H ,’INPUT NO. COMPOSITE MATERIALS NEEDED,NM’)
9120 FORMAT(1H ,‘INPUT E IN FIBER DIRECTION')
9130 FORMAT(1H ,’INPUT E NORMAL TO FIBER DIRECTION')
9140 FORMAT(1H ,’INPUT MAJOR POISSONS RATIO IN LT PLANE’)
9150 FORMAT(1H ,’INPUT POISSONS RATIO IN TT PLANE’)
9160 FORMAT(1H ,’INPUT SHEAR MODULUS G IN LT PLANE’)
9170 FORMAT(1H ,’INPUT SHEAR MODULUS G IN TT PLANE’)
9175 FORMAT(1H ,’INPUT LONG.TENSION ALLOWABLE')
9177 FORMAT(1H ,’INPUT LONG COMPRESSION ALLOWABLE')
9178 FORMAT(1H ,’INPUT TRANS. TENSION ALLOWABLE’)
9179 FORMAT(1H ,'INPUT TRANS. COMPRESSION ALLOWABLE’)
9180 FORMAT(1H ,’SELECT A MATERIAL NUMBER FROM ONE TO TEN’)
9190 FORMAT(1H ,’'MATERIAL PROPERTY DATA ECHO’)
9320 FORMAT (1H ,’SPECIFY THE CURRENT MATL. ID. NO.’)
9440 FORMAT(1H ,’INPUT SIDE LENGTH OF UNIT CELL IN X DIR.’)
9450 FORMAT(1H ,’INPUT SIDE LENGTH OF UNIT CELL IN Y DIR.')
9455 FORMAT(1H ,’INPUT SIDE LENGTH OF UNIT CELL IN Z DIR.’)
9460 FORMAT(1H ,’INPUT DIST. (%) ORIGIN TO UNIT CELL NODE’,I3)
9480 FORMAT (1H ,’INPUT 1ST FIBER SPHERICAL ANGLE’)
9485 FORMAT (1H ,’INPUT 1ST INTERFACIAL NORMAL ANGLE’)
9490 FORMAT(1H ,’INPUT 2ND FIBER SPHERICAL ANGLE’)
9495 FORMAT (1H ,’INPUT 2ND INTERFACIAL NORMAL ANGLE’)
9500 FORMAT(1H ,’EX,EY,EZ = ’,3F12.2)
9510 FORMAT(1H ,’GYZ,GX2,GXY = ’,3F12.2)
9520 FORMAT(1lH ,‘MUYZ,MUXZ,MUXY = ‘,3F12.4)
9525 FORMAT(1H ,‘MUZY,MUZX,MUYX = ‘,3F12.4)
9530 FORMAT(1H ,’NUYZ,X ; NUYZ,Y ; NUYZ,2 = ’,3F12.4)
9540 FORMAT(1H ,’NUXZ,X ; NUXZ,Y ; NUXZ2,2 = ‘,3F12.4)
9550 FORMAT (1H ,’NUXY,X ; NUXY,Y ; NUXY,2 = ‘,3F12.4)
9560 FORMAT (1H )
9600 FORMAT (1H ,13X,’ELASTIC CONSTANTS OF THE COMPOSITE ‘)
9610 FORMAT(1H ,13X,'INPUT APPLIED STRESSES IN X,Y,Z COORDINATES’)
9620 FORMAT(1H ,5X,’INPUT X NORMAL STRESS ‘)
9630 FORMAT(1H ,5X,’INPUT Y NORMAL STRESS ')
9640 FORMAT(1H ,5X,’ INPUT Z NORMAL STRESS ')
9650 FORMAT(1H ,5X,’INPUT YZ SHEAR STRESS ')
9660 FORMAT(1H ,5X,’INPUT XZ SHEAR STRESS ')
9670 FORMAT(1lH ,SX,’INPUT XY SHEAR STRESS '
9690 FORMAT(1H ,S5X,’STRESSES IN ELEMENT NO.’,313)
9692 FORMAT (1H ,’MATERIAL NO. ‘,I3)
9694 FORMAT(1H ,’NORMAL 1,2,3 ', 3F14.2)
9696 FORMAT(1H ,'SHEAR 23,13,12 ’,3F14.2)
9698 FORMAT (1H ,’MINIMUM MARGIN OF SAFETY IS ’,Fl12.4)
9700 FORMAT(1H ,’INPUT MATL. NO. 1 AT ',3I4)
9710 FORMAT(1H ,’INPUT MATL. NO. 2 AT ’,3I4)
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c

9715
9720
9895
9898
9899

100

200

300

400

500

600
700

FORMAT (1H , ' INPUT MATL. NO. 3 AT r,314)

FORMAT (1H , ' INPUT 1ST MATL. VOLUME FRACTION')

FORMAT (1H ,’ ((',F7.1,°1) ")
FORMAT (1H ,’ ((*,F4.1,"))")
FORMAT (14 ,' (.13, ))°)

SUBROUTINE INV(A)

DIMENSION A(6,6),B(4,4),X(4,4),Y(4,4),2(4,4)

D=A(1,1)*(A(2,2)*A(3,3)-A(2,3)*A(3,2))
1l -A(2,1)*(A(1,2)'A(3,3)-A(1:3)'A(3,2))
2 +A(3,1)*(A(1,2)'A(2,3)—A(2,2)'A(1,3))

IF(D.EQ.0.0) GOTO 700

B(l,1)= (3(2'2)'3(3,3)'R(2a3)'5(3,2))/9

3(1.2)--(A(1.2)'5(3.3)-A(1.3)'A(3,2))/D

B(l1,3)= (A(1,2)*A(2,3)-A(1,3)'A(2,2))/D

5(2.1)--(5(2.1)'A(3,3)-A(2'3)'A(3.1))/D

B(2,2)= (A(1,1)*A(3,3)-A(1,3)*A(3,1))/D

B(2,3)=-(A(1,1)*A(2,3)-A(1,3)*A(2,1))/D

B(3,1)- (5(2.1)'5(3,2)-5(2,2)'A(3,1))/D

3(3'2)--(A(1' 1)'A(3’ 2)-A(1, 2) .A(agl))/o

B(3,3)= (A(1,1)*A(2,2)-A(1,2)*A(2,1))/D

DO 100 I=1,3

DO 100 J=1,3

X(I,J)=0.0

Y(1,J)=0.0

Z2(I,J)=A(I+3,J+3)

DO 200 I=1,3

DO 200 J=1,3

DO 200 K=1,3

X(I;J)'X(I.J)+B(I,K)'A(K'J+3)

Y(I,J0)=Y(I,J)+A(I+3,K)*B(K,J)

DO 300 I=1,3

DO 300 J=1,3

DO 300 K=1,3

z(I,J)-Z(I,J)-Y(I,K)*A(K,J+3)

D=2(1, 1)'(2(2'2)"3(3, 3)-2(213)'2(30 2))
1 -Z(2,1)Y(Z(1'2)*2(3'3)-2(1,3)*2(3.2))
2 +2(3,1)%(2(1,2)*2(2,3)-2(2,2)*2(1,3))

IF(D.EQ.0.0) GOTO 700

DO 400 I=1,6

DO 400 J=1,6

A(1,J)=0.0

Al4,4)= (2(2,2)'2(3,3)-2(2.3)'2(3¢2))/D

A(4,5)"(Z(142)*2(3.3)-2(1,3)'2(3'2))/D

A(4,6)= (2(1,2)*2(2,3)~2(1,3)*2(2,2))/D

A(S,4)=-(2(2,1)*2(3,3)-2(2,3)*2(3,1))/D
A(5,5)= (z(1, 1)*2(3,3)-2(1, 3) -z(all))/D
A(S.Q)--(Z(l,1)'2(2.3)-2(1,3)'2(2.1))/D

A(6,4)= (2(2,1)*2(3,2)-2(2,2)*2(3,1))/D

A(6,5)=-(2(1,1)*2(3,2)-2(1,2)*2(3,1))/D
A(6,6)= (2(1,1)*2(2,2)-2(1,2)*2(2,1))/D

DO 500 I=1,3

Do 500 J=1,3

A(I,J)=B(I,J)

DO 500 K=1,3
A(I,J*3)-A(I,J+3)-X(I,K)'A(K+3,J+3)

A(I+3,J7)=A(I+3,J)-A(I+3,K+3)*Y(K,J)

DO 600 I=1,3
Do 600 J=1,3

DO 600 K=1,3

A(I,J)=A(I,J)-A(1,K+3)*Y(K,J)

GO TO 2000

D= A(1,1)*(A(2,2)*(A(3,3)*A(4,4)~A(3,4)*A(4,3))
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c

~A(2,3)*(A(3,2)*A{4,4)-A(3,4)*A(4,2))
+A(2,4)*(A(3,2)*A(4,3)-A(3,3)*A(4,2)))

D=D-A(1,2)*(A(2,1)*(A(3,3)*A(4,4)-A(3,4)*A(4,3))

~A(2,3)*(A(3,1)*A(4,4)-A(3,4)*A(4,1))
+A(2,9)*(A(3,1)*A(4,3)-A(3,3)"A(4,1)))

D=D+A(1,3)*(A(2,1)*(A(3,2)*A(4,4)-A(3,4)*A(4,2))

-A(2,2)*(A(3,1)*A(4,4)-A(3,4)*A(4,1))
+A(2,4)*(A(3,1)*A(4,2)~A(3,2)*A(4,1)))

D=D-A(1,4)*(A(2,1)*(A(3,2)*A(4,3)-A(3,3)*A(4,2))

WRITE (6,

~A(2,2)*(A(3,1)*A(4,3)~A(3,3)*A(4,1))
+A(2,3)*(A{3,1)*A(4,2)-A(3,2)*A(4,1)))

9010) D

C9010 FORMAT(F12.2)

-

LS N -

N - N - N =

™~ -

1
2

1
2

N N N N N

Ty

2

IF(D.EQ.

B(l,1)=

B(1,2)=

B(l,3)~

B(l,4)=

B(2,1)=

B(2,2)=

B(2,3)=

B(2,4)=

B(3,1)=

B(3,2)=

B(3,3)=

B(3,4)~

B(4,1)=

B(4,2)=

B(4,3)=

3(4'4)-

DO 1090

0.0) D=1.0 :
+A(2,2)*(A{3,3)*A(4,4)-A(3,4)*A(4,3))
“A(2,3)*(A(3,2)*A(4,4)-A(3,4)*A(4,2))
+A(2,4)*(A(3,2)*A(4,3)-A(3,3)*A(4,2))
=A(1,2)*(A(3,3)*A(4,4)~-A(3,4)*A(4,3))
+A(1,3)*(A(3,2)*A(4,4)-A(3,4)*A(4,2))
=A(1,4)*(A(3,2)*A(4,3)-A(3,3)*A(4,2))
+A(1,2)*(A(2,3)*A(4,4)-A(2,4)*A(4,3))
“A(1,3)*(A(2,2)*A(4,4)-A(2,4)*A(4,2))
+A(1,4)*(A(2,2)*A(4,3)-A(2,3)*A(4,2))
=A(1,2)*(A(2,3)*A(3,4)-A(2,4)*A(3,3))
+A(1,3)*(A(2,2)*A(3,4)=-A(2,4)*A(3,2))
-A(1,4)*(A(2,2)*A(3,3)-A(2,3)*A(3,2))
=A(2,1)*(A(3,3)*A(4,4)-A(3,4)*A(4,3))
+A(213)’(A(311)'A(4l4)-A(3l4)'h(4l1))
=A(2,4)*(A(3,1)*A(4,3)-A(3,3)*A(4,)))
+A(1,1)*(A(3,3)*A(4,4)-A(3,4)*A(4,3))
~A(1,3)*(A(3,1)*A(4,4)-A(3,4)*A(4,1))
+A(1,4)*(A(3,1)*A(4,3)~A(3,3)*A(4,1))
~A(1,1)*(A{2,3)*A(4,4)-A(2,4)*"A(4,3))
+A(1,3)*(A(2,1)*A(4,4)-A(2,4)*A(4,1))
~A{1,4)*(A(2,1)*A(4,3)-A(2,3)*A(4,1))
+A(1,1)*(R(2,3)*A(3,4)-A(2,4)*A(3,3))
“A(1,3)*(AR(2,1)*A(3,4)-A(2,4)*A(3,1))
+A(1,4)*(A(2,1)*A(3,3)-A(2,3)*A(3,1})
+A(2,1)*(A(3,2)*A(4,4)~-A(3,4)*A(4,2))
=A(2,2)*(A(3,1)*A(4,4)-A(3,4)*A(4,1))
+A(2,4)*(A(3,1)*A(4,2)-A(3,2)*A(4,1))
“A(1,1)*(A(3,2)*A(4,4)-A(3,4)*A(4,2))
+A(1,2)*(A(3,1)*A(4,4)-A(3,4)*A(4,1})
=A(1,4)*(A(3,1)*A(4,2)~-A(3,2)*A(4,1))
+A(1,1)*(A(2,2)*A(4,4)-A(2,4)*A(4,2))
-A(1,2)*(A(2,1)*A(4,4)-A(2,4)*A(4,1))
+A(1,4)*(A(2,1)*A(4,2)-A(2,2)*A(4,1))
-A{1,1)*(A(2,2)*A(3,4)-A(2,4)*A(3,2))
+A(1,2)*(A(2,1)*A(3,4)-A(2,4)*A(3,1))
-A(1,4)*(A(2,1)*A(3,2)-A(2,2)*A(3,1))
-A(2,1)*(A(3,2)*A(4,3)-A(3,3)*A(4,2))
+A(2,2)*(A{3,1)*A(4,3)-A(3,3)*A(4,]))
~A(2,3)*(A(3,1)*A(4,2)-A(3,2)*A(4,1))
+A(1,1)*(A(3,2)*A(4,3)-A(3,3)*A(4,2))
-A(1,2)*(A(3,1)*A(4,3)-A(3,3)*A(4,1))
+A(1,3)*(A(3,1)*A(4,2)-A(3,2)*A(4,1))
-A(1,1)*(A(2,2)*A(4,3)-A(2,3)*A(4,2))
+A(1,2)*(A(2,1)*A(4,3)-A(2,3)*A(4,1))
=A(1,3)*(A(2,1)*A(4,2)-A(2,2)*A(4,1))
+A(1,1)*(A(2,2)*A(3,3)-A(2,3)*A(3,2))
-A(1,2)*(A(2,1)*A(3,3)-A(2,3)*A(3,1))
+A(1,3)*(A(2,1)*A(3,2)~A(2,2)*A(3,1))

I=1,4

DO 1090 J=-1,4
1090 B(I,J)=B(I,J)/D

DO 1100

I=1,4
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oo

ann

1100

1110

1200

1210

1300

1400

1450

1500

1550

1600
2000

10
15
20
30

40
45
50

DO 1100 J=1,4

X(I,J)=0.0

Y(I,J)=0.0

DO 1110 I=1,2

DO 1110 J=1,2
2(I,J)=A(I+4,JT+4)

DO 1200 I=1,4

DO 1200 J=1,2

DO 1200 X=1,4
X(I,J)=X(I,T)+B(I,K)*A(K, J+4)
DO 1210 I=1,2

DO 1210 J=1,4

DO 1210 K=1,4
Y(I,J)=Y(I,J)+A(I+4,K)*B(K,J)
DO 1300 I=1,2

DO 1300 J=1,2 -

DO 1300 K=1,4
2(I,J)=Z(I,J)~-Y(I,K)*A(K,J+4)
D=Z(1,1)*2(2,2)-2(1,2)*2(2,1)
IF(D.EQ.0.0) D=1.0

DO 1400 I=1,6

DO 1400 J=1,6

A(X,J)=0.0

A(5,5)=2(2,2)/D
A(5,6)=-2(1,2)/D
A(6,5)=-2(2,1)/D
A{6,6)=2(1,1)/D

DO 1450 I=1,4

DO 1450 J=1,4

A(I,J)=B(I,J)

DO 1500 I=1,4

DO 1500 J=1,2

DO 1500 K=1,2
A{I,J+4)=A(I,J+4)=-X(I,K)*A(K+4,T+4)
DO 1550 I=1,2

DO 1550 J=1,4

DO 1550 K=1,2
A(I+4,J)=A(I+4,0)~-A(I+4,K+4)*Y(K,T)
DO 1600 I=1,4

DO 1600 J=1,4

DO 1600 K=1,2
A(I,J)=A(I,J)-A(I,K+4)*Y(K,J)
CONTINUE

RETURN

- A - - - —— - - - - -

SUBROUTINE MATINV (A, NMAX,N,B,MAX,M,DETERM)
IMPLICIT REAL*8 (A-H,0-2)

STANDARD MATRIX INVERSION SUBPROGRAM

DIMENSION A{NMAX, NMAX),B(NMAX,MAX)
DIMENSION IPIVOT(300),INDEX(300,2),PIVOT(300)

INITIALIZATION

DETERM = 1.0

DO 20 J=1,N
IPIVOT(J) = 0

DO §S0 I=1,N

SEARCH FOR THE PIVOT ELEMENT

AMAX = 0.0
DO 105 J=1,N
IF (IPIVOT(J) .EQ. 1) GOTO 105
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60 DO 100 K=1,N

70 IF (IPIVOT(K) - 1)80,100,740

80 . IF (ABS (AMAX) .GE. ABS(A(J,K))) GOTO 100

85 IROW = J

90 ICOLUM = K

100 CONTINUE

105 CONTINUE

110 IPIVOT (ICOLUM) = IPIVOT(ICOLUM) + 1
INTERCHANGE ROWS TO PUT ELEMENT ON DIAGONAL

130 IF (IROW .EQ. ICOLUM) GOTO 260

140 DETERM = -DETERM

150 DO 200 L=1,N

160 SWAP = A(IROW,L) -

170 A(IROW,L) = A(ICOLUM,L)

200 A(ICOLUM,L) = SWAP

205 IF (M .LE. 0) GOTO 260

210 DO 250 L=1,M

220 SWAP = B({IROW,L)

230 B(IROW,L) = B(ICOLUM,L)

250 B(ICOLUM,L) = SWAP

260 INDEX(I,1) = IROW

270 INDEX(I,2) = ICOLUM

310 PIVOT(I) = A(ICOLUM,ICOLUM)
320 DETERM = DETERM*PIVOT(I)

DIVIDE PIVOT BY PIVOT ELEMENT

330 A(ICOLUM,ICOLUM) = 1.0
340 DO 350 L=1,N

350 A(ICOLUM,L) = A(ICOLUM,L)/PIVOT(I)

355 IF (M .LE. 0) GOTO 380

360 DO 370 L=1,M

370 B(ICOLUM,L) = B(ICOLUM,L)/PIVOT(I)
REDUCE NON-PIVOT ROWS

380 DO 550 Ll=1,N

390 IF (L1 .EQ. ICOLUM) GOTO 550

400 T = A(L1l, ICOLUM)

420 A(L1,ICOLUM) = 0.0

430 DO 450 L=1,N

450 A(L1,L) = A(L1,L) - A(ICOLUM,L)*T

455 IF (M .LE. 0) GOTO 550

460 DO 500 L=1,M

500 B(L1,L) = B(L1,L) - B(ICOLUM,L)*T

550 CONTINUE

INTERCHANGE COLUMNS

600 DO 710 I=-1,N
610 LeN+1-~-1
620 IF (INDEX(L,1) .EQ. INDEX(L,2)) GOTO 710

630 JROW = INDEX(L,1)
640 JCOLUM = INDEX(L,2)
650 DO 705 K=1,N
660 SWAP = A(K,JROW)
670 A(K,JROW) = A(K,JCOLUM)
700 A (K,JCOLUM) = SWAP
705 CONTINUE
710 CONTINUE
740 RETURN
END
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SUBROUTINE TRANS1 (Al,A2,T)
c .
C GET THE STRAIN TRANSFORMATION MATRIX (T)

DIMENSION T(6,6)
S1=SIND (A1)

S2=SIND (A2)

C1=COSD (A1)

€2=COSD (A2)
S15=S1*S1
§2S=52*S2
C15=C1*Cl1
C25=C2*C2
5C1=51+Cl
§C2=52*C2
T(1,1)=C15*C2S
T(2,1)=S1S*C2S
T(3,1)=52S
T(4,1)=51%SC2*2.0
T(5,1)=C1*SC2*2.0
T(6,1)=5C1*C25%2.0
T(1,2) =518
T(2,2)=C18
T(3,2)=0.0
T(4,2)=0.0
T(5,2)=0.0
T(6,2)=-5C1%2.0
T(1,3)=C15*S2S
T(2,3)=S15*S28
T(3,3)=C2S
T(4,3)=-51*SC2*2.0
T(5,3)=-C1*SC2*2.0
T(6,3)=SC1*S25*2.0
T(1,4)=SC1*S2
T(2,4)=-T(1,4)
T(3,4)=0.0
T(4,4)=C1%C2
T(5,4)=-51*C2
T(6,4)=-(C1S-51S) *S2
T(1,5)=-C1S*SC2
T(2,5)=-515*SC2
T(3,5)=SC2
T(4,5)=S1*(C25-525)
T(5,5)=C1*(C25-525)
T(6,5)=-2.0*SC1*SC2
T(1,6)=-SC1*C2
T(2,6)=SC1*C2
T(3,6)=0.0
T(4,6)=C1*S2
T(S,6)=-S1*S2
T(6,6)=(C1S-S1S) *C2

RETURN
END
Cocmemmeeeeeccscemme—cc—ccsen——————
SUBROUTINE TRANS2(Al,A2,T)
c

C GET THE INVERSE STRAIN TRANSFORMATION MATRIX (T)

DIMENSION T(6,6)
S1=SIND (Al)
S2=SIND (A2)
C1=COSD(Al)
C2=COSD (A2)
S15=51*S1
§25=52*S2
Cl15=C1*Cl
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C25=C2*C2

SC1=51+*Cl

§C2=52*C2
T(1,1)=C15*C2S
T(1,2)=518*C2s
T(1,3)=S28
T(1,4)=S1*SC2
T(1,5)=Cl*sC2
T(1,6)=SC1*C28
T(2,1)=518
T(2,2)=ClS
T(2,3)=0.0
T(2,4)=0.0
T(2,5)=0.0
T(2,6)=-SC1
T(3,1)=C15*S2S o
T(3,2)=51S*S28
T(3,3)=C28
T(3,4)=-81*SC2
T(3,5)=-C1*sSC2
T(3,6)=SC1*s28
T(4,1)=2.0*5C1*S2
T(‘,z)"T(‘, 1)
T(4,3)=0.0
T(4,4)=Cl*C2
T(4,5)=-51*C2
T(4,6)=-(C15-S18)*S2
T(5,1)=-2.0*C15*SC2
T(5,2)=-2.0*S15*SC2
T(5,3)=2.0*s5C2
T(5,4)=S1*(C25~528)
T(5,5)=C1*(C25-825)
T(5,6)==-2,0%SC1*SC2
T(6,1)=-2,0*SC1*C2
T(6,2)=2,0*SC1l*C2
T(6,3)=0.0
T(6,4)=Cl*S2
T(6,5)=-S1*S2
T(6,6)=(C1S-S18)*C2
RETURN

END

SUBROUTINE GETSS (MM, MN, PROP, SS)

DIMENSION 5S(6,6),PROP(MM,10)
DO 1113 II~1,6
DO 1113 JJ=1,6

1113 SS(I1,JJ7)=0.0
E1=-PROP (MN, 1)
E2=PROP (MN, 2)
Ul=PROP (MN, 3)
U2=~PROP (MN, 4)
G1=PROP (MN, 5)
G2=PROP (MN, 6)
R=U1l*U1*E2/El
D=(1.0+U2) *(1.0-02-2.0*R)
§S(1,1)=E1*(1.0-02*U2)/D
§S(1,2)=E2*U1*(1.0+02)/D
8S(1,3)=58(1,2)
$S(2,1)=S5(1,2)
§S(2,2)=E2*(1.0-R)/D
§5(2,3)=E2* (U2+R) /D
$S(3,1)=85(1,3)
$8(3,2)=85(2,3)
$8(3,3)=58(2,2)
$S(4,4)=G2
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$5(5,5)=Gl
§5(6,6)=Gl
RETURN

DIMENSION BM(6,24)

DO 100 I=1,6

DO 100 J=1,24

BM(I,J)=0.0
Xl-'(0.125/AA)'(1.0-Y/BB)'(l.O-Z/CC)
¥1--(0.125/BB)'(1.0~X/AA)*(I.O-Z/CC)
21--(0.125/CC)'(I.O-X/AA)‘(I.O-Y/BB)
X2--(0.125/AA)'(1.0-Y/BB)'(1.0+Z/CC)
YZ-’(0.125/BB)'(1.0-X/AA)*(1.0+Z/CC)
22-+(0.125/CC)'(l.O-X/AA)'(1.0-!/38)
X3--(0.125/AA)*(1.0+Y/BB)'(l.O-Z/CC)
Y3-+(0.125/BB)'(I.O-X/AA)'(l.O-Z/CC)
13--(0;125/CC)'(1.0-X/AA)'(1.0+¥/BB)
XQ--(0.125/AA)'(1.0+¥/BB)'(1.0+Z/CC)
Y4'+(0.125/BB)'(I.O-X/AA)'(1.0+Z/CC)
z4-+(0.125/CC)'(I.O-X/AA)'(1.0+Y/BB)
X5-+(0.125/AA)‘(1.0-Y/BB)'(I.O-ZICC)
Y5-—(0.125/BB)'(1.0+X/AA)'(1.0‘2/CC)
25--(0.125/CC)'(I.O*X/AA)*(I.O-Y/BB)
X6-+(0.125/AA)'(1.0-!/88)'(1.0+Z/CC)
YG--(0.125/BB)'(1.0+X/AA)'(1.0+Z/CC)
26-+(0.125/CC)'(1.0+X/AA)'(1.0-Y/BB)
X7-+(0.125/AA)'(1.0+Y/BB)*(I.O-Z/CC)
Y7'+(0.125/BB)*(1.0+X/AA)*(1.0-2/CC)
27--(0.125/CC)'(1.0+X/AA)'(1.0+¥/BB)
X8'+(0.125/AA)'(1.0*Y/BB)'(1.0*Z/CC)
YB-+(0.125/BB)'(1.0+X/AA)'(1.0+Z/CC)
28-+(0.125/CC)'(1.0+X/AA)'(1.0+Y/BB)
BM(1,1)=X1

BM(2,2)=Y1

BM(3,3)=21

BM(1,4)=X2

BM(2,5)=Y2

BM(3,6)=22

BM(1, 7)=X3

BM(2,8)=Y3

BM(3,9)=23

BM(1,10)=X4

BM(2,11)=Y4

BM(3,12)=24

BM(1,13)=X5

BM(2,14)=Y5

BM(3,15)=25

BM(1,16)=X6

BM(2,17)=Y6

BM(3,18)=26

BM(1, 19)")(7

BM({2,20)=Y7

BM(3. 21)-27

BM(1,22) =X8

BM(2,23)=Y8

BM(3,24)=28

BM(4,1)=Y1

BM(5,2)=21

BM(6,3)=X1

BM(4,4)=Y2

BM(5,5)=22

BM(6,6)=X2

BM(4,7)=Y3
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BM(5,8)=23
BM(6,9)=X3
BM(4,10)=Y4
BM(5,11)=24
BM(6,12)=X4
BM(4,13)=YS
BM(5,14) =25
BM(6,15)=X5
BM(4,16)=Y6
BM(5,17)=26
BM(6,18)=X6
BM(4,19)=Y7
BM(S, 20)-27
BM(6,21)=X7
BM(4,22)=Y8
BM(5,23)=28 o
BM(6,24)=X8
BM(6,1)=21
BM(4, 2) =X1
BM(5,3)=Y1
BM(6,4) =22
BM(4, 5) =X2
BM(S, 6)=Y2
BM(6,7) =23
BM{4,8)=X3
BM(5, 9)=Y3
BM(6,10)=24
BM(4,11)=X4
BM(5,12)=Y4
BM(6,13)=25
BM(4,14)=X5
BM(S,15)=Y5
BM(6,16)=26
BM(4,17)=X6
BM(6,19)=27
BM(5, 21)=Y?
BM(6,22) =28
BM(4,23)=X8
BM(5,24)=Y8
RETURN

END

SUBROUTINE GETMS (MM, MN, PROP, S, SAFE)

DIMENSION S(6),PROP (MM,10)
SL=S(1)

IF(SL.GE.0.0) SLL=PROP (MN,7)
IF(SL.LT.0.0) SLL=PROP(MN,8)
SL=ABS (SL)

SLL=ABS (SLL)

IF(SLL.EQ.0.0) SLL=1.0

SAFE= (SLL-SL) /SLL
D=(S(2)+5(3))/2.0
B=(S(2)-S(3))/2.0

B=ABS (B)

B=S(4)/2.0

H=ABS (H)

R=B*B+H*H

R=SQRT (R)

MAX=D+R

MIN=R-D

IF(MAX.LE.0.0) GO TO 100
SLL=PROP (MN, 9)

SLL=ABS (SLL)
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100

7700

IF(SLL.EQ.0.0) SLL=1.0
SAF= (SLL-MAX) /SLL

IF (SAF.LT.SAFE) SAFE=SAF
CONTINUE

IF(MIN.GE.0.0) GO TO 200
SLL=PROP (MN, 10)

SLL=ABS (SLL)
IF(SLL.EQ.0.0) SLL=1.0
SAF=(SLL+MIN) /SLL

IF (SAF.LT.SAFE) SAFE=SAF
CONTINUE

RETURN

END

SUBROUTINE GETDD(SSS1,85S2,V1,V2,DD1,DD2)

DIMENSION SSS1(6,6),SSS2(6,6),DD1(6,6),DD2(6,6)
DIMENSION DD(6,6),CB(6,6)
DO 7700 II=1,6

DO 7700 JJ=1,6
CB(II,JJ)=SS82(II,JJ)~S881(11,JJ)
DD(II,JJ7)=0.0
DD1(II,JJ)=0.0
DD2(II1,JJ)=0.0
DD({1,1)=SS881(1,1)
DD(1,2)=-8552(1,1)

DD (1, 3)=SS8S1(1,5)
DD(1,4)=-8S882(1,5)
DD(1,5)=5881(1,6)

DD(1, 6)=-5552(1,6)
DD(2,1)=V1

DD(2,2)=V2
DD(3,1)=8SS1(5,1)
DD(3,2)=-8S52(5,1)
DD{3,3)=8S881(5,5)
DD(3,4)=-58582(5,5)
DD{3,5)=58S1(5, 6)

DD (3, 6)=-§852(5,6)
DD(4,3)=V1

DD(4,4)=V2

_DD(5,1)=SSS1(6, 1)

DD(5,2)=~5S52(6,1)

DD (5,3)=SSS1(6,5)

DPD(5,4)=-5552(6,5)

DD (S5, 5)=SSS1(6, 6)

DD(5,6)=-5852(6,6)

DD(6, 5) =Vl

CALL INV(DD)

DD1(1,1)=DD(1,2)

pD1(1,5)=DD(1,4)

DD1(1,6)=DD(1,6)
DD1(1,2)=~DD(1,1)*CB(1,2)+DD(1,3)*CB(5,2)+DD(1,5)*CB(6,2)
DD1(1,3)=DD{(1,1)*CB(1,3)+DD(1,3)*CB(5,3)+DD(1,5)*CB(6,3)
DD1(1,4)=DD(1,1)*CB(1,4)+DD(1,3)*CB(5,4)+DD(1,5)*CB(6,4)
DD1(2,2)=1.0

DD1(3,3)=1.0

DD1(4,4)=1.0

DD1(5,1)=DD(3,2)

DD1(5,5)=DD(3,4)

DD1(5,6)=DD(3,6)
DD1(5,2)=DD(3,1)*CB(1,2)+DD(3,3)*CB(S5,2)+DD(3,5)*CB(6,2)
DD1(5,3)=DD(3,1)*CB(1,3)+DD(3,3) *CB(5,3)+DD(3,5)*CB(6,3)
DD1(5,4)=DD(3,1)*CB(1,4)+DD(3,3)*CB(5,4)+DD(3,5)*CB(6,4)
DD1(6,1)=DD(5,2)

DD1(6,5)=DD (5,4)
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pD1(6,6)=DD(S,6)
DDI(5,2)-00(5,1)'03(1,2)*00(5,3)'C8(5,2)*DD(5,5)'CB(5.2)
DDl(5,3)-DD(5,1)'C8(1,3)*DD(5:3)'CB(5,3)+DD(5,5)'CB(6,3)
DDl(5,4)-00(5,1)'CB(1,4)+DD(5,3)'CB(5,4)+DD(5,5)'CB(G,4)
pD2(1,1)=DD(2,2)

pD2(1,5)=DD(2,4)

pD2(1,6)=DD(2,6)
DDZ(1,2)-DD(2,1)'C3(1,2)+DD(2,3)'CB(S.Z)+DD(2,5)'CB(G,2)
DDZ(1,3)-DD(2,1)*CB(I,3)+DD(2,3)*CB(5,3)+DD(2,S)'C8(G.3)
DD2(1,4)-DD(2,1)'C8(1,4)*DD(2,3)'CB(5,4)+DD(2,5)'CB(6,4)
DD2(2,2)=1.0

pD2(3,3)=1.0

pD2(4,4)=1.0

pD2(5,1)=DD(4,2)

pD2(5,5)=DD(4,4)

pD2 (5, 6)=DD (4, 6)
DD2(5,2)-DD(4,1)'CB(1,2)+DD(4,3)'CB(5,2)+DD(4,5)*CB(6,2)
DDZ(5,3)-DD(4,1)'CB(1,3)+DD(4,3)*CB(5,3)+DD(4,5)'CB(G,3)
DDZ(S,Q)-DD(4,1)'CB(1,4)+DD(4,3)*CB(5,4)+DD(4,S)‘CB(6,4)
pD2(6,1)=DD(6,2)

pD2(6,5)=DD(6,4)

DD2(6,6)=DD(6,6)
DD2(6,2)-00(6,1)*CB(1,2)+DD(6,3)'CB(5,2)+DD(6,5)'CB(G,2)
DDZ(5,3)-00(6,1)'CB(1,3)+DD(5,3)'CB(5,3)+DD(6,5)'CB(6,3)
DDZ(6,4)-DD(6,1)'CB(1,4)+DD(6,3)'CB(5,4)+DD(6,5)*CB(G.1)
RETURN

END

F45



fForm Approved
OMS8 No. 0704-0188

REPORT DOCUMENTATION PAGE

Public reporting burden for this collection of Information 1s esUMated to average ! hour per response. including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the date needed. and compieting and reviewing the collection of information _ Send comments m’-rdmg this burden estimate of any other aspect of this
coliection of information, iInciuding tioms 101 reduCing this burden. 10 Washington Headquarters Services, Directorate for infarmation Operations and Reports, 1215 jefterson
Davis Highway, Suite 1204 Arlington, V 222024302, and 10 the Otfice of Management and Budget. Paperwork Reduction Project (0704-0 188), Washington, DC 20503.

Y. AGENCY USE ONLY (Leave blank) |2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
February 1993 Contractor Report

| #
4. TITLE AND SUBTITLE
Approximating the Stress Field Within the Unit Cell of a Fabric

Reinforced Composite Using Replacement Elements

[ R AUTNOﬂS;
R. L. Foye

S. FUNDING NUMBERS

C NAS1-18000
WU 505-83-50-04

”—
7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES)

Lockheed Enginesring and Sciencs Company
Ressarch Drive
Hampton, VA 23866

8. PERFORMING ORGANIZATION
REPORT NUMBER

#
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Asronautics and Space Administration
Langley Research Center
Hampton, VA 23881

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

NASA CR-191422

11. SUPPLEMENTARY NOTES

Langley Technical Monitor: Charles E. Harris
Final Report

e T ——————

120. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified - Unlimited
Subject Category 24

‘
13. ABSTRACT (Maximum 200 words)

This report concerns the prediction of the elastic moduli and the internal stresses within the unit cell of a fabric reinforced
composite. In the proposed analysis no restrictions or assumptions are necessary concerning yarn or fow cross-sectional
shapes or paths through the unit celi but the unit cell kself must be a right hexagonal paralielepiped. All the unit cell
dimensions are assumed to be small with respect 1o the thickness of the composite structure that it models.

The finite element analysis of a unit csll is usually complicated by the mesh generation problems and the non-standard,
adjacent-cell, boundary conditions. This analysis avoids these problems through the use of preprogrammed boundary
conditions and replacement materials (or elements). With replacement elements it is not necessry to match all the
constitutional material interfaces with finite element boundaries. Simple brick-shaped elements can be used to model the
unit cell structure. The analysis predicts the elastic constants and the average stresses within each constituent material of
each brick element. The application and results of this analysis are demonstrated through several example problems which
include a number of composite microstructures.

14. SUBJECT TERMS 15. NUMBER OF PAGES

. . 138
Textile composites; Stress analysis; Unit cell; Replacement elements; Finite-

pos y P Finite-eloments 76, PRICE COOE

A07
# #M
17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT
Liociassifiad

% 7$40-01-280-5500

Standard Form 298 (Rev. 2-89)
prescribed by ANSI Std. 23918
298-102









